
Hearing without Listening

BhikshaRaj (CMU)

Collaborators: ManasPathak(CMU)
Jose Portelo, AlbertoAbad, Isabel Trancoso(INESC)

ShantanuRane, PetrosBoufounos(MERL)
Paris Smaragdis(UIUC)

MadhuShashanka(UTRC)

1

http://www.cmu.edu/index.shtml

A recent article

Åhttp://www.technologyreview.com/news/428
053/wiping-away-your-siri-fingerprint/

ÅYour voice can be a biometric identifier, like
your fingerprint. Does Apple really have to
store it on its own servers?

ïDavid Talbot

2

http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/

A recent article

Å http://www.technologyreview.com/news/428053/wiping-away-
your-siri-fingerprint/
ïBy David Talbot

άΧpeopleusingApple'sdigital assistantSirisharea distinctconcern.
Recordingsof their actual voices,askingquestionsthat might be
personal,travel to a remoteAppleserverfor processing. Thenthey
remainstoredthere; Applewon't sayfor how long.

That voice recording,unlike most of the data producedby smart
phonesand other computers,is an actual biometric identifier. A
voiceprintτif disclosedby accident, hack, or subpoenaτcan be
linked to a specificperson. And with the current boom in speech
recognitionapps, Appleisn't the onlyoneamassingsuchdata.έ

3

http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/428053/wiping-away-your-siri-fingerprint/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/
http://www.technologyreview.com/news/427793/where-speech-recognition-is-going/

The Issues

Å SIRI (or a hacker who breaks into SIRI) can

ïUse (edit) your voice recordings to impersonate you

ïLearn about you

ÅYour identity, gender, nationality (accent), emotional state..

ïTrack you from uploads / communications of voice recordings

Å Nothing specific to SIRI

Å Not a futuristic scenario

ïEverytimeyou use your voice, you leave a print behind!!
4

Not an Implausible Scenario

Åά¦ǎŜǊ ǾŜǊƛŦƛŎŀǘƛƻƴΥ aŀǘŎƘƛƴƎ ǘƘŜ uploadersof

ǾƛŘŜƻǎ ŀŎǊƻǎǎ ŀŎŎƻǳƴǘǎέ

ïLei, Choi, Janin, Friedland, ICASSP 2011

Åά[ƛƴƪƛƴƎ ǇŜǊǎƻƴŀǎ ōŀǎŜŘ ƻƴ ƳƻŘŜƭƛƴƎ ƻŦ ǘƘŜ

audio tracks of random FlickrǾƛŘŜƻǎέ

ïUsed voiceprints of speakers in audio track to find

them in other recordings

5

More problems

Å Doctors / Lawyers / Govtagencies wish to use a speech
recognition service

ï.ǳǘ ŎŀƴΩǘ ςHIPAA/laws prevent them from exposing the data

Å Speech data warehouses could be mined for useful market
patterns

ïBut the audio also contains recordings of people reciting their credit
card numbers, social security numbers etc..

6

Speech Recognition System

text

A Security Problem

ÅABC NEWS Oct 2008

ÅInside Account of U.S. Eavesdropping on
Americans

Despite pledges by President George W. Bush
and American intelligence officials to the
contrary, hundreds of US citizens overseas
have been eavesdropped on as they called
friends and family back home...

7

The Problem

ÅSecurity: NSA must monitor call for public safety

ïCaller may be a known miscreant

ïCall may relate to planning subversive activity

ÅThe gist of the problem:

ïNSA is possibly looking for key words or phrases
Å5ƛŘ ǿŜ ƘŜŀǊ άōƻƳō ǘƘŜ ǇŜƴǘŀƎƻƴέΚΚ

ïOr if some key people are calling in
ÅWas that Aymanal ½ŀǿŀƘƛǊƛΩǎvoice?

ÅBut must have access to all audio to do so

ïIncluding recordings by perfectly innocent people

8

Privacy Preserving Voice Processing

ÅProblems are examples of need for privacy preserving
voice processing algorithms

Å¢ƘŜ ƳŀƧƻǊƛǘȅ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ ŎƻƳƳǳƴƛŎŀǘƛƻƴ Ƙŀǎ
historically been done by voice

ÅVoice is considered a very private mode of
communication

ïEavesdropping is a social no-no

ïMany places that allow recording of images in public
disallow recording of voice!

ÅYet little current research on how to maintain the
privacy of voice ..

9

The History of Privacy Preserving
Technologies for Voice

10

The History of Counter Espionage
against Private Voice Communication

11

Parameterization is not Privacy

ÅCŀƭƭŀŎȅΥ CŜŀǘǳǊŜǎ ŜȄǘǊŀŎǘŜŘ ŦǊƻƳ ǘƘŜ ŀǳŘƛƻ άƘƛŘŜέ ǘƘŜ

audio

ÅMerely parameterizingthe audio into features does

not solve the problem

ïFeatures can be used to classify identity, gender,

nationality etc.

ïThey canbe used to synthesize speech

ÅEven fake recordings the user never spoke

ÅάtǊƻǘŜŎǘƛƴƎέ ŀǳŘƛƻ ƴŜŜŘǎ ƳƻǊŜ ǘƘŀƴ ǇŀǊŀƳŜǘŜǊƛȊŀǘƛƻƴ

12

Distortion is not Privacy

13

ÅIŀǾŜ ǿŜ ŀŎǘǳŀƭƭȅ άƘƛŘŘŜƴέ ǘƘŜ ƛŘŜƴǘƛǘȅ ƻŦ ǘƘŜ ǎǇŜŀƪŜǊΚ

ïNo, cadence gives it away.

ïNo, pitch shift can be undone.

ÅHave we hidden the content?

ïNot at all..

Signal Processing is not the Solution

ÅSignal modification is not a solution in most

situations

ÅSimple parameter extraction is not a solution

14

The NSA Problem as a Metaphor

ÅTelephone company unwilling to expose
audio to NSA

ïMay provide encrypted data to NSA

ÅNSA cannot expose what it is trying to find to
the telephone company

ïMay provide it in encrypted form though

15

Abstracting the problem

Å Data holder willing to provide encrypted data

ïA locked box

ÅMining entity willing to provide encrypted keywords

ïSealed packages

ÅMust find if keywords occur in data

ïFind if contents of sealed packages are also present in the locked box

ÅWithout unsealing packages or opening the box!

Å Data are spoken audio

16

Basics: Cryptography 101

ÅMessages and Encryption

Encryption
EK1

(.)

Decryption
DK2

(.)

Plaintext (M) Ciphertext (C)

Original

Plaintext (M)

Encryption

Key (K1)

Decryption

Key (K2)

EK1
(M) = C DK2

(C) = M

A Good Cryptosystemςall the security inherent in the knowledge of
keys, and none in the knowledge of algorithms

17

Basics: Cryptography 101

ÅSymmetric Cryptosystem

ïEncryption key can be calculated from the decryption
ƪŜȅ ŀƴŘ ǾƛŎŜ ǾŜǊǎŀ όƻŦǘŜƴΣ ǘƘŜȅΩǊŜ ǘƘŜ ǎŀƳŜύ

Encryption
EK1

(.)

Decryption
DK2

(.)

Plaintext (M) Ciphertext (C)

Original

Plaintext (M)

Encryption

Key (K1)

Decryption

Key (K2)

EK1
(M) = C DK2

(C) = M

18

Basics: Cryptography 101

ÅPublic-key (asymmetric) Cryptosystem

ïDifferent keys for encryption and decryption

Encryption
EK1

(.)

Decryption
DK2

(.)

Plaintext (M) Ciphertext (C)

Original

Plaintext (M)

Encryption

Key (K1)

Decryption

Key (K2)

EK1
(M) = C DK2

(C) = M

First described in

(Diffieand Hellman, 1976)
19

Tools and Background

ÅCan cryptographyhelp?

Typical security scenario ςprevent unauthorized access

20

Tools and Background

ÅCan cryptographyhelp?

ÅYES!

ïNext: a practice exercise to show how..

The problem we face ςpreserve privacy

x f()

f(x) = ??
I can evaluate f(.)

as a service

21

An practice exercise in hiding
information

ÅFirst: a simple pattern matching problem

ÅExplains

ïTypical problem setup

ïTypical procedure

ï9ȄǇƭŀƛƴǎ ŀ άǇǊƛƳƛǘƛǾŜέ

ïHighlights issues

22

A Musical Conundrum

ÅAlice has just found a short piece of music on the
web
ïPossibly from an illegal site!

ÅShe likes it. She would like to find out the name
of the song

23

Alice and her song

ÅBob has a large, organized catalogue of songs

ÅSimple solution:
ïAlice sends her song snippet to Bob

ïBob matches it against his catalogue

ïReturns the ID of the song that has the best match to
the snippet

24

What Bob does

Å Bob uses a simple correlation-based procedure

Å Receives snippet W = w[0]..w[N]

Å For each song S

ïAt each lag t

ÅFinds Correlation(W,S,t) = Si w[i] s[t+i]

ïScore(S) = maximum correlation: maxt Correlation(W,S,t)

Å Returns song with largest correlation.

25

S1

S2

S3

SM

26

S1

S2

S3

SM

W

ωBob uses a simple correlation-based procedure

ωReceives snippet W = w[0]..w[N]

ωFor each song S
o At each lag t

ÁFinds Correlation(W,S,t) = Si w[i] s[t+i]

o Score(S) = maximum correlation: maxt Correlation(W,S,t)

ωReturns song with largest correlation.

What Bob does

27

S1

S2

S3

SM

W

Å Bob uses a simple correlation-based procedure

Å Receives snippet W = w[0]..w[N]

Å For each song S

ïAt each lag t

ÅFinds Correlation(W,S,t) = Si w[i] s[t+i]

ïScore(S) = maximum correlation: maxt Correlation(W,S,t)

Å Returns song with largest correlation.

What Bob does

28

S1

S2

S3

SM
Corr(W, S1, 0)

W

Å Bob uses a simple correlation-based procedure

Å Receives snippet W = w[0]..w[N]

Å For each song S

ïAt each lag t

ÅFinds Correlation(W,S,t) = Si w[i] s[t+i]

ïScore(S) = maximum correlation: maxt Correlation(W,S,t)

Å Returns song with largest correlation.

What Bob does

29

S1

S2

S3

SM
Corr(W, S1, 0)

W

Corr(W, S1, 1)

Å Bob uses a simple correlation-based procedure

Å Receives snippet W = w[0]..w[N]

Å For each song S

ïAt each lag t

ÅFinds Correlation(W,S,t) = Si w[i] s[t+i]

ïScore(S) = maximum correlation: maxt Correlation(W,S,t)

Å Returns song with largest correlation.

What Bob does

30

S1

S2

S3

SM
Corr(W, S1, 0)

W

Corr(W, S1, 1)

Corr(W, S1, 2)

Å Bob uses a simple correlation-based procedure

Å Receives snippet W = w[0]..w[N]

Å For each song S

ïAt each lag t

ÅFinds Correlation(W,S,t) = Si w[i] s[t+i]

ïScore(S) = maximum correlation: maxt Correlation(W,S,t)

Å Returns song with largest correlation.

What Bob does

31

S1

S2

S3

SM

Corr(W, S1, 0) Corr(W, S1, 1) Corr(W, S1, T)

Å Bob uses a simple correlation-based procedure

Å Receives snippet W = w[0]..w[N]

Å For each song S

ïAt each lag t

ÅFinds Correlation(W,S,t) = Si w[i] s[t+i]

ïScore(S) = maximum correlation: maxt Correlation(W,S,t)

Å Returns song with largest correlation.

What Bob does MAX

C1

32

S1

S2

S3

SM

Corr(W, S1, 0) Corr(W, S1, 1) Corr(W, S1, T)

Å Bob uses a simple correlation-based procedure

Å Receives snippet W = w[0]..w[N]

Å For each song S

ïAt each lag t

ÅFinds Correlation(W,S,t) = Si w[i] s[t+i]

ïScore(S) = maximum correlation: maxt Correlation(W,S,t)

Å Returns song with largest correlation.

What Bob does

Corr(W, S2, 0) Corr(W, S2, 1) Corr(W, S2, T)

Corr(W, S3, 0) Corr(W, S3, 1) Corr(W, S3, T)

Corr(W, SK, 0) Corr(W, SK, 1) Corr(W, SK, T)

MAX

C1

C2

C3

CK

ARGMAX M

Alice has a problem

ÅHer snippet may have been illegally downloaded

ÅShe may go to jail if Bob sees it

ïBob may be the DRM police..

33

An Unacceptable Solution

ÅAlice distrusts Bob

ï{ƻΧ

ÅBob could send his catalogue to Alice to do the matching
herself..

ïReally??

ï.ƻōΩǎ ŎŀǘŀƭƻƎǳŜ ƛǎ Ƙƛǎ LtΦ

ïAlice may be a competitor

ÅhǊ ŀ ƳŀƭƛŎƛƻǳǎ ǇŜǊǎƻƴ ǿŀƴǘƛƴƎ ǘƻ ŜȄǇƻǎŜ .ƻōΩǎ ŎŀǘŀƭƻƎǳŜ

ÅBob distrusts Alice

ïWill not send her his catalogue

34

{ƻƭǾƛƴƎ !ƭƛŎŜΩǎ tǊƻōƭŜƳ

ÅAlice could encrypt her snippet and send it to
Bob

ÅBob could work entirely on the encrypted data

ïAnd obtain an encrypted result to return to Alice!

ÅA job for Secure Multi-party Computation

35

Secure Multiparty Computation (SMC)

ÅA group of untrusting parties desire to
compute a joint function of their private data

ÅIdeal situation: All of them send their data to a
trusted third party

ïWho computes the function
and only reveals results

36

Practical SMC

ÅParties communicate directly with one another
following specified protocols

ÅhǳǘŎƻƳŜ ƛŘŜŀƭƭȅ ƛŘŜƴǘƛŎŀƭ ǘƻ άƛŘŜŀƭέ ŎŀǎŜ

ïFunction computed without revealing data

ÅProtocol: A sequence of steps, involving two or
more parties, to accomplish a computational task

37

Typical Assumptions

ÅParties are semi-honest, i.e. honest-but-curious

ïThe party tries to get as much information from the
result and outputs of intermediate steps

ïHowever, the party does not act maliciously (eg. by
lying about the inputs used)

ÅThey follow the protocol correctly

38

Tools for SMC

39

ÅHomomorphic Cryptosystems

ÅMasking

ÅOblivious Transfer

Tools for SMC

40

ÅHomomorphic Cryptosystems

ÅMasking

ÅOblivious Transfer

Homomorphic Encryption

ÅAllows for operations to be performed on
ciphertextswithout requiring knowledge of
corresponding plaintexts

E(x) E(y) = E(x y)

41

Homomorphic Encryption

x f()

f(x) = ??
I can evaluate f(.)

as a service

E[x]

E[f(x)]

42

Fully Homomorphic Encryption (FHE)

ÅFully Homomorphic ςability to compute arbitrary
functions over plaintexts

ïUnclear whether fully homomorphic schemes were
even possible until 2009

ïBreakthrough work by Gentry (2009, 2010); not very
practical but an active area of research (Lauteret
al.,2011).

43

Partially HomomorphicEncryption

ÅAllows some operations to be performed on
ciphertext

ÅAdditive Homomorphism: Paillier

44

PaillierEncryption
Å Public key encryption scheme (Pascal Paillier, Eurocrypt99).

Å Important properties:

Å Homomorphicaddition

ïCan add a number to an encrypted number without decryption

ïTo add Y to X, given E[X]:

Å Homomorphicmultiplication:

ïCan multiply an encrypted number without decryption

ïTo multiply X by Y, given E[X]

45

XgXE ´][

][][][YXEgggYEXE YXYX +==´ +

()][][XYEggXE XYYXY ==´

Homomorphic Encryption ςIn Practice

ÅFHE is not practical

ÅSMC permits computation of arbitrary
functions using partially homomorphic
encryption through collaborative computation

46

Returning to Alice and Bob

47

Correlation is the root of the problem
Å.ƻō ƴŜŜŘǎ !ƭƛŎŜΩǎ ǎƴƛǇǇŜǘ ǘƻ ŎƻƳǇǳǘŜ ŎƻǊǊŜƭŀǘƛƻƴǎ

Å The correlation operation is as follows

ïCorr(W,S,t) = Si w[i] s[t+i]

Å This is actually a dot product:

ïW = [w[0] w[2] .. w[N]]T

ïSt = [s[t] s[t+1] .. s[t+N]]T

ïCorr(W,S,t) = W.St

Å Bob can compute Encrypt[Corr(W,S,t)] if Alice sends him Encrypt[W]

Å Assumption: All data are integers

ïEncryption is performed over large enough finite fields to hold all the
numbers

48

{ƻƭǾƛƴƎ !ƭƛŎŜΩǎ tǊƻōƭŜƳ
Å Alice generates public and private keys. She sends the public key to Bob

Å She encrypts her snippet using her public key and sends it to Bob:

ï Alice Ą.ƻō Υ 9ƴŎώ²ϐ Ґ 9ƴŎώǿώлϐϐΣ 9ƴŎώǿώнϐϐΣ Χ 9ƴŎώǿώbϐϐ

Å Bob can compute Enc[Corr(W,S,t)] = Enc [Si w[i]s[t+i]] homomorphically!

Å For each sample : Bob homomorphicallymultiplies w[i] with s[t+i]

Enc[w[i]]s[t+i] = Enc[w[i]s[t+i]]

Å He homomorphicalyadds the sample-wise products

Pi Enc[w[i]s[t+i]] = Enc [Si w[i]s[t+i]]
= Enc[Corr(W,S,t)]

Å .ƻō Ŏŀƴ ŎƻƳǇǳǘŜ ǘƘŜ ŜƴŎǊȅǇǘŜŘ ŎƻǊǊŜƭŀǘƛƻƴǎ ŦǊƻƳ !ƭƛŎŜΩǎ ŜƴŎǊȅǇǘŜŘ ƛƴǇǳǘ
without needing even the publickey

Å The above technique is the Secure Inner Product (SIP) protocol

49

Primitive: Secure Inner Product (SIP)

ÅAlice has vector X. Bob has Y.

ÅOutcome:

ïBob has Enc[X.Y]

ÅHow:

ïAlice sends E[X] to Bob

ïBob computes E[X.Y] = Pi E[Xi]
Yi

50

Y X

rB rA

E[X.Y]

rA+rB =X.Y

THIS IS A TYPICAL PROTOCOL TO COMPUTE
A PRIMITIVE OPERATION SECURELY

51

S1

S2

S3

SM Corr(W, S1, 0)

ÅAt each shift, Bob computes Enc[Corr(W,S,t)].

ÅTo obtain an encrypted correlation value at

that shift

What Bob does
W

52

S1

S2

S3

SM

ÅAt each shift, Bob computesEnc[Corr(W,S,t)].

ÅTo obtain an encrypted correlation value at

that shift

What Bob does
W

Corr(W, S1, 1)

53

S1

S2

S3

SM

ÅAt each shift, Bob computesEnc[Corr(W,S,t)].

ÅTo obtain an encrypted correlation value at

that shift

What Bob does
W

Corr(W, S1, 2)

54

S1

S2

S3

SM

ÅFor each song

ïAt each shift

ÅBob obtains an encrypted correlation

What Bob does
W

55

S1

S2

S3

SM

Å Bob eventually gets encrypted correlations at each lag for each
song

Å He must find the ID of the song with the largest maximum
correlation

Å But how does he compute the max correlation for each song?

ïor argmaxacross songs?

ïSince everything is encrypted..

What Bob Gets MAX

ARGMAX

?

?

?

?

?

Bob Tries to Solve the Problem

Å.ƻō Ŏŀƴ Ŝƴƭƛǎǘ !ƭƛŎŜΩǎ ƘŜƭǇΗ

ÅBob ships the encrypted correlations back to Alice
ïShe can decrypt them all, find the maximum value, and

send the index back to Bob

ïBob retrieves the song corresponding to the index

ÅProblem ςBob effectively sends his catalogue over to
Alice
ïAlice can determine what songs Bob has by comparing the

correlations to those from a catalog of her own
ÅEven if Bob sends the correlations in permuted order

Å.ƻō ƴŜŜŘǎ !ƭƛŎŜΩǎ ƘŜƭǇΣ ōǳǘ Ŏŀƴƴƻǘ ǘǊǳǎǘ !ƭƛŎŜ
56

Bob and Alice Collaborate without Trust

ÅBob has encrypted correlations

ÅHe (or Alice) must find the ID of the largest
correlation without either knowing the
correlations

Å.ƻō ŦƛǊǎǘ άǎƘŀǊŜǎέ ǘƘŜ ŎƻǊǊŜƭŀǘƛƻƴǎ ǿƛǘƘ !ƭƛŎŜ

ÅThen he and Alice collaborate with their
shares to find the max. ID (or value)

57

Tools for SMC

58

ÅHomomorphic Cryptosystems

ÅMasking

ÅOblivious Transfer

Bob Shares his Data

ÅBob has a collection of encrypted values
ïCorrelations here

BOB ALICE

1

2

3

K

E[S1]

E[S2]

E[S3]

E[SK]

59

ÅBob homomorphicallysubtracts noise from each value
ïAnd also separately retains the noise

BOB ALICE

1

2

3

K

E[S1- r1]

E[S2- r2]

E[S3- r3]

E[SK- rK]

r1

r2

r3

rK

60

Bob Shares his Data

Bob MASKS the correlations
with random noise

ÅBob sends the Encrypted numbers to Alice

BOB ALICEPBob

61

2

3

K

E[S1- r1]

E[S2- r2]

E[S3- r3]

E[SK- rK]

r1

r2

r3

rK

1

Bob Shares his Data

BOB ALICEPBob

62

S1- r1

S2- r2

S3- r3

SK- rK

r1

r2

r3

rK

ÅBob sends the Encrypted numbers to Alice
ïWho decrypts them to get the plaintext numbers
ïNeither Alice nor Bob know what the actual correlations

are at this point

Bob Shares his Data

BOB ALICEPBob

63

S1- r1

S2- r2

S3- r3

SK- rK

r1

r2

r3

rK

ÅBob sends the Encrypted numbers to Alice
ïWho decrypts them to get the plaintext numbers
ïNeither Alice nor Bob know what the actual correlations

are at this point

Bob Shares his Data

THE SHAREPROTOCOL
Bob converts his encrypted
numbers to plaintext shares
with Alice

Bob and Alice Collaborate without Trust

ÅBob has encrypted correlations

ÅHe (or Alice) must find the ID of the largest
correlation without either knowing the
correlations

Å.ƻō ŦƛǊǎǘ άǎƘŀǊŜǎέ ǘƘŜ ŎƻǊǊŜƭŀǘƛƻƴǎ ǿƛǘƘ !ƭƛŎŜ

ÅThen he and Alice collaborate with their
shares to find the max. ID (or value)

64

BOB ALICEPBob

65

S1- r1

S2- r2

S3- r3

SK- rK

r1

r2

r3

rK

Å.ƻō Ƙŀǎ άǊέ ǾŀƭǳŜǎ

Å!ƭƛŎŜ Ƙŀǎ ά{-Ǌέ ǾŀƭǳŜǎ

The Secure Max Protocols

ÅBob ŜƴŎǊȅǇǘǎ ǘƘŜ άǊέ ǾŀƭǳŜǎ ǿƛǘƘ his own
encryption

BOB ALICE

EBob[r1]

EBob[r2]

EBob[r3]

EBob[rK]

S1- r1

S2- r2

S3- r3

SK- rK

66

The Secure Max Protocols

ÅBob ŜƴŎǊȅǇǘǎ ǘƘŜ άǊέ ǾŀƭǳŜǎ ǿƛǘƘ his own encryption
ïAnd ships it to Alice

BOB ALICE

EBob[r1]

EBob[r2]

EBob[r3]

EBob[rK]

S1- r1

S2- r2

S3- r3

SK- rK

67

The Secure Max Protocols

ÅBob ŜƴŎǊȅǇǘǎ ǘƘŜ άǊέ ǾŀƭǳŜǎ ǿƛǘƘ his own encryption
ïAnd ships it to Alice
ïWho adds her own numbers to them homomorphically
ïTo end with Encrypted S values she cannot read

BOB ALICE

EBob[r1+S1- r1] = EBob[S1]

EBob[r2+S2- r2] = EBob[S2]

EBob[r3+S3- r3] = EBob[S3]

EBob[rK+SK- rK] = EBob[SK]

68

The Secure Max Protocols

ÅAlice permutes her data

ïTo change or order of the data

BOB ALICEPAlice

69

The Secure Max Protocols

14

1

7

1

EBob[S14]

EBob[S1]

EBob[S7]

EBob[S1]

ÅAlice homomorphicallysubtracts a constant
noise q

BOB ALICE

14

1

7

1

EBob[S14-q]

EBob[S1-q]

EBob[S7-q]

EBob[S1-q]

PAliceq

70

The Secure Max Protocols

ÅAlice homomorphicallyadds a constant noise q

Åand ships it to Bob

BOB ALICE

14

1

7

1

EBob[S14-q]

EBob[S1-q]

EBob[S7-q]

EBob[S1-q]

PAlice

q

71

The Secure Max Protocols

ÅAlice homomorphicallyadds a constant noise q
Åand ships it to Bob
ÅWho decrypts it

BOB ALICE

S14-q

S1-q

S7-q

S1-q

PAlice

q

72

The Secure Max Protocols

Outcome so far

ÅOrder

ïBob has the correlations in permuted order

ÅOnly Alice knows the permutation

ïHe does not know which correlation is from which song

Å Value

ïTrue correlation values are hidden from Bob by an
additive constant

Åknown to Alice

Å But

ïBob and Alice can collaborate to find the maximum S
value

ïBob and Alice can collaborate, so that Alice learns the
index of the max value

73

S14-q

S1-q

S7-q

S1-q

q

PAlice

SMV : Finding the Max Value

74

S14-q

S1-q

S7-q

S1-q

q

ÅBob finds the maximum of his data

ÅOutcome:

ïBob has SID_Max-q

ïAlice has q

ïAlice and Bob have random additive
shares of the maximum value SID_Max

ÅThe sum of their results is the maximum
correlation

ÅAlice and Bob have performed the
ά{ŜŎǳǊŜ ƳŀȄƛƳǳƳ ǾŀƭǳŜέ {a±
protocol

SID_Max-q
q

SMV : Finding the Max Index

75

S14-q

S1-q

S7-q

S1-q

PAlice

Å Bob finds the Index of maximum of his data

ïIŜ Ŏŀƴ Řƻ ǘƘƛǎ ƛƴ ǎǇƛǘŜ ƻŦ άǉέ

ï.ǳǘ ǘƘŜ ƛƴŘŜȄ ǾŀƭǳŜ ƛǎ ǇŜǊƳǳǘŜŘ ōȅ !ƭƛŎŜΩǎ
permutation
Å{ƻ .ƻō ŘƻŜǎƴΩǘ ǊŜŀƭƭȅ ƪƴƻǿ ƛǘ

Å He sends the result to Alice

Å Who unpermutesthe value to get the actual index
of the largest input!

Å !ƭƛŎŜ ŀƴŘ .ƻō ƘŀǾŜ ǇŜǊŦƻǊƳŜŘ ǘƘŜ ά{ŜŎǳǊŜ
ƳŀȄƛƳǳƳ LƴŘŜȄέ {aL ǇǊƻǘƻŎƻƭ

PAlice(ID_Max)

ID_Max

invert

BOB ALICEPBob

76

S1- r1

S2- r2

S3- r3

SK- rK

r1

r2

r3

rK

The Secure Max Protocols

ÅInput: Bob has vector X
Alice has vector Y

ÅOutput

ÅSMV:

ïBob and Alice end up with additive
shares of
maxi Xi + Yi

ÅSMI:

ïAlice finds
argmaxi Xi + Yi

Å!ƭƛŎŜ Ƙŀǎ ǘƘŜ L5 ƻŦ ǘƘŜ ǎƻƴƎ ƛƴ .ƻōΩǎ ŎŀǘŀƭƻƎ ǘƘŀǘ ōŜǎǘ
matches her snippet.

ÅShe can send this ID to Bob and he can return the
metadata for that song

ÅProblem:

ïAlice cannot simply send the index of the best song to Bob

ïIt will tell Bob which song it is
ÅThe song may not be available for public download

ÅƛΦŜΦ !ƭƛŎŜΩǎ ǎƴƛǇǇŜǘ ƛǎ ƛƭƭŜƎŀƭ

Åi.e.

77

Retrieving the Song

78

Retrieving the Song

Tools for SMC

79

ÅHomomorphic Cryptosystems

ÅMasking

ÅOblivious Transfer

OBLIVIOUS TRANSFER (OT)

ÅAlice encrypts the ID with her key and ships it
to Bob

BOB ALICE

ID_MaxE[ID_Max]

E[]

80

OBLIVIOUS TRANSFER (OT)

ÅFor each song Si, Bob

ïHomomorphicallycomputes
Enc[ID_Maxςi]

ïHomomorphicallymultiplies that by a
random number to get
Enc[ri(ID_Max-i)]

ïHomomorphicallyadds the meta data
Mi to the result to get:

Enc[Mi + ri(ID_Max-i)]

BOB ALICE

E[M2 + r2(ID_Max-2)]

E[M2 + r2(ID_Max-3)]

E[MK + rK(ID_Max-K)]

E[M1 + r1(ID_Max-1)]

81

Meta data for the
i-th song is Mi

Note: For ONLY the song with id
i = ID_Max
The result = Enc[Mi]

OBLIVIOUS TRANSFER (OT)

ÅBob Ships this to Alice

BOB ALICE

E[M1 + r1(ID_Max-1)]

E[M2 + r2(ID_Max-2)]

E[M2 + r2(ID_Max-3)]

E[MK + rK(ID_Max-K)]

82

Note: For ONLY the song with id
i = ID_Max
The result = Enc[Mi]

OBLIVIOUS TRANSFER (OT)

ÅBob Ships this to Alice

ÅAlice decrypts the ID_Max-th entry

ïFor this entry rk(ID_Maxςk) = 0, so she gets the correct result

ïDecrypting the remaining is pointless

ÅShe only gets Mk + rk(ID_MaxςƪύΣ ǿƘƛŎƘ ƛǎ άƳŀǎƪŜŘέ ōȅ ƴƻƛǎŜ

ALICE

E[M1 + r1(ID_Max-1)]

E[M2 + r2(ID_Max-2)]

E[MID_Max+ r2(ID_MaxςID_Max)]

E[MK + rK(ID_Max-K)]

MID_Max

83

Oblivious Transfer (OT)

Sender

Chooser

a ̐ (0, 1) (x0, x1)

xa = ?

Send two public keys K0 and K1

Choose a symmetric key K

SendEka
(K) Decrypts with both private keys

ǘƻ ƻōǘŀƛƴ YΩ0ŀƴŘ YΩ1: YΩa = K

SendEƪΩa(xa) for a ̐ (0, 1)

Canbe generalizedto 1-out-of-n OT
84

.ǳǘ ƛǘ ƛǎƴΩǘ ǎŜŎǳǊŜΗ

ÅAssumption: Honest but curious

ïAlice and Bob follow the protocols

Å²Ƙŀǘ ƛŦ ǘƘŜȅ ŘƻƴΩǘΚ

ïIf Bob sends Alice bogus numbers at any point her

results would be wrong

ïBob and/or Alice could use bogus intermediate

results to learn more about one another

85

Zero Knowledge Proofs (ZKPs)

ÅSMC protocols for semi-honest behavior can
be augmented with ZKPs appropriately to be
secure under malicious behavior

ÅZKP :
ïάProverέ Ƙŀǎ ǎƻƳŜ ƛƴŦƻǊƳŀǘƛƻƴ

ïά±ŜǊƛŦƛŜǊέ ǿŀƴǘǎ ǘƻ ŜƴǎǳǊŜ ǎƘŜ Ƙŀǎ ƛǘ

ïBut Proverwill not reveal information to Verifier

ïShe can use ZKPs to convince Verifier

86

Zero Knowledge Proofs (ZKPs)

ÅPeggy has a magic word to open a secret door
in a cave

ÅVictor wants to pay for the secret, but not
ǳƴǘƛƭ ƘŜΩǎ ǎǳǊŜ ǎƘŜ ƪƴƻǿǎ ƛǘ

ÅPeggy will tell the secret but not until she
receives the money

87

Zero Knowledge Proofs (ZKPs)
Å!ǎǎǳƳŜ ǘƘŀǘ tŜƎƎȅΩǎ ƛƴŦƻǊƳŀǘƛƻƴ ƛǎ ŀ ǎƻƭǳǘƛƻƴ ǘƻ ŀ ƘŀǊŘ

problem

ÅPeggy converts her problem to an isomorphic one

ÅPeggy solves the new problem and commits answer

ÅPeggy reveals the new instance to Victor

ÅVictor asks Peggy either to

ïprove the instances are isomorphic; or

ïƻǇŜƴ ǘƘŜ ŎƻƳƳƛǘǘŜŘ ŀƴǎǿŜǊ ŀƴŘ ǇǊƻǾŜ ƛǘΩǎ ŀ ǎƻƭǳǘƛƻƴ

ÅRepeat n times

ÅTypical hard problems: finding graph isomorphismsor
Hamiltonian cycles (NP-complete problems)

88

ZKPs in Homomorphic Encryption

ÅBob and Alice can ensure each step of their

protocol through ZKPs

ïE.g. through threshold encryption schemes

ÅWhich involve secret sharing and ZKP

ÅHigh overhead: Computation time can

increase by several orders of magnitude

ÅIn general, in the rest of this talk we will

assume honest-but-curious parties
89

.ǳǘ ƛǘ ǎǘƛƭƭ ƛǎƴΩǘ ǎŜŎǳǊŜΗ
Å 9ǾŜƴ ƛŦ ǿŜ ǎŜŎǳǊŜ ŜǾŜǊȅǘƘƛƴƎΧ

Å At one stage Bob has: PAlice [Corr(W,s,t)-q] for all s

ï He can compute histogram(Corr(W,s,t)-q)

Å LŦ !ƭƛŎŜΩǎ ǎƴƛǇǇŜǘ ƛǎ ƛƴ Ƙƛǎ ŎŀǘŀƭƻƎǳŜΣ .ƻō Ŏŀƴ ǇŜǊŦƻǊƳ ŀ ƳŀȄƛƳǳƳ ƭƛƪŜƭƛƘƻƻŘ
estimate

ï For each snippet of each song in his catalog

ï Correlate snippet with entire catalog

ï Compute histogram of correlation values

ï/ƻƳǇŀǊŜ ƘƛǎǘƻƎǊŀƳ ǘƻ ƘƛǎǘƻƎǊŀƳ ŦǊƻƳ !ƭƛŎŜΩǎ ǾŀƭǳŜǎ

Å wŜǾŜŀƭǎ ǉΣ ǘƘŜ ƛƴŘŜȄ ƻŦ ǘƘŜ ǎƻƴƎ ŀƴŘ !ƭƛŎŜΩǎ ǎƴƛǇǇŜǘΗ

Å Solution: Alice only sends Corr(W,s,t) for randomized subsets of s and t

90

Lessons Learned

ÅPossible to perform complex collaborative

operations without revealing information!

ïThrough careful use of cryptographic tools

ÅIllustrates a few concepts

ïHomomorphicencryption

ïSMC

ïOblivious Transfer

ïPrimitives
91

Learned about Primitives
ÅGeneral format: Computing simplefunction

Ŧό·Σ¸ύ ƻŦ !ƭƛŎŜΩǎ ǇǊƛǾŀǘŜ Řŀǘŀ · ŀƴŘ .ƻōΩǎ

private data Y

ÅOne of the following outcomes:

ïBoth parties get random additive shares of the

result

ÅAlice gets rA, Bob gets rB

ÅActual result f(X,Y) = rA+rB

ïOne party gets an encrypted version of the

result Enc[f(X,Y)]

ïThe intended party gets the complete result

f(X,Y) 92

Y X

rB rA

E[f(X,Y)]

f(X,Y)

rA+rB =f(X,Y)

Examples of Primitives

Å Secure inner product

ï f(X,Y) = <X,Y>

ïAlso possible if Bob has E[Y]

Å Secure max

ï f(X,Y) = maxi (Xi + Yi)

Å Secure max-ID

ï f(X,Y) = argmaxi Xi + Yi

Å Several protocols proposed for max primitives (in particular) in the
literature

93

Y X

The Logsum

ÅP(X) = Si P(X,i)

ÅSi = log P(X,i)

ÅWant to compute

log (P(X)) = log(Si P(X,i))

= log(Si exp(Si))

ÅMore generally

ïsi = log(zi)

ïWant to compute

log (z1 + z2 ..) = log (exp(s1) + exp(s2)..)

94

The Secure LogsumSLOG

ÅInput: Alice has vector X. Bob has vector Y.

ïxi + yi = log (zi)

ÅOutput: Alice and Bob obtain rA and rB

such that rA + rB = log (Si zi)

ÅHow:

ïAlice chooses rA at random.

ïShe computes Q = exp(X - rA)

ïBob computes S = exp(Y)

ïAlice and Bob perform SIP to obtain uA and uB such that
uA + uB = Q.S = Si exp(Xi + Yi-rA) = Si zi exp(rA)

ïAlice sends uA to Bob, who computes
rB = log(uA+uB) = rA + log Si zi

Y X

rB rA

rA+rB = ln (Si zi)

95

Computation with Primitives

Å Conventional computation: User Alice sends data to system Bob
Å Bob computes an algorithm

96

Å SMC: Computation recast as a sequence of primitives
Å Alice and Bob compute primitives via SMC
Å Bobgets the result

ALGORITHM

BOB

BOB

ALICE

BOB

Other tools and techniques

ÅGarbled circuits:

ïCast computation of functions as Boolean circuits

ïEmploy OT to permit parties to compute the cirucit on

private input

ÅSecret Sharing:

ïά{ƘŀǊŜέ ŀ ŘŀǘǳƳ 5 ŀŎǊƻǎǎ a ǇŀǊǘƛŜǎΣ ǎǳŎƘ ǘƘŀǘ ŀǘ ƭŜŀǎǘ

N of them are required to collaborate to reveal D

ÅOther similar tools

97

Part II: Dealing with speech

98

Automatic Speech Processing
Technologies

ÅLexical content comprehension

ïRecognition

ÅDetermining the sequence of words that was spoken

ïKeytermspotting

ÅDetecting if specified terms have occurred in a recording

ÅBiometrics and non-lexical content recognition

ïIdentification

ÅIdentifying the speaker

ïVerification/Authentication

ÅConfirming that a speaker is who he/she claims to be

ÅAll of these involve statistical pattern classification
99

Secure Probability Computation

ÅAlice has data X

ÅBob has a paramtericprobability distribution with

parameters L

ÅAlice and Bob want to compute P(X;L)

ïWithout revealing X to Bob or Lto Alice

ÅTypes of distributions most commonly used in speech

and audio

ïGaussian Mixtures

ïHMMs

100

Computing a Gaussian

ÅX is any feature vector

Åmis the mean of the Gaussian

ÅQis the covariance matrix

ÅD is the dimensionality of the feature vector

ÅThe log Gaussian of a vector

() ()()mm
p

-Q--
Q

= - XXXP
T

D

15.0exp
||)2(

1
)(

() ()mmp -Q--Q--= - XXDXP
T 15.0||log5.02log5.0)(log

101

Log. Gaussians

ÅComputing log likelihood of a vector

ÅCan be rewritten as

Åwhere

() ()mmp -Q--Q--= - XXDXP
T 15.0||log5.02log5.0)(log

ùú
ø

éê
è
ù
ú

ø
é
ê

è QQ-
=

--

10
5.0

]1[)(log
11

X
C

XXP T m

mmp 15.02log5.0 -Q--= TDC

XWXXP T ~~~
)(log =

102

ùú
ø

éê
è=

1
~ XXLet

Log. Gaussians

ÅLet

ÅThe log Gaussian can be expressed as an inner
product

ä=
ji

jiji WXXXP
,

,

~
)(log

()()()]...
~~

~~

~~

[Ĕ
011000 XXXXXXX=

]
~

 ...
~

~

~

[,0,11,00,0 DDWWWWW=

WXXP TĔ)(log =

103

XWXXP T ~~~
)(log =

The Secure Log Gaussian (SGAU)

ÅInput: Alice has a data vector X.

Bob has Gaussian m,Q

ÅOutput: Alice and Bob get additive shares rA and rB

such that rA + rB = log P(X)

ÅHow:

ïAlice computes from X

ïBob computes W from m, Q

ïAlice and Bob participate in SIP(,W) to obtain rA and rB

WXXP TĔ)(log =

XĔ

XĔ

104

SGAU: A VARIANT

ÅBob has Encrypted parameters E[m]

ïThis can happen under some situations...

ïHe can compute Q-1

ïBut can only compute encrypted matrix W

homomorphically

ÅHe must perform SIP with encrypted W

]
~

[
][]0[

][]5.0[11

WE
CEE

EE
=ù
ú

ø
é
ê

è QQ- -- m
][WE

105

Modeling Paradigms: Mixtures of
Gaussian

Åwk is the mixture weight of the kth Gaussian

Åmk is the mean of the kth Gaussian

ÅQk is the covariance matrix the kth Gaussian

ÅD is the dimensionality of the feature vector

() ()()ä -Q--
Q

= -

k

kk

T

k

k

D

k XX
w

XP mm
p

15.0exp
||)2(

)(

106

Modeling Paradigms: Mixtures of
Gaussian

ÅDefine:

ù
ú

ø
é
ê

è

+

QQ-
=

--

kk

kkk
k wC

W
log0

5.0~ 11 m

] ...
~

~

~

[0,1,1,0,0,0, kkkk WWWW =

()ä=
k

k

TWXXP Ĕexplog)(log

A LOGSUM

107

Note bottom right
corner includes
log wk

()()()]...
~~

~~

~~

[Ĕ
011000 XXXXXXX=ùú

ø
éê
è=

1
~ XX

Secure Log Mixture of Gaussian (SMOG)

ÅInput: Alice has X,
Bob has mixture Gaussian {wk, mk, Qk, for all k}

ÅOutput: Alice and Bob obtain additive shares rA and rB

such that rA+rB = log P(X)

ÅHow

ïFor each k,
ÅAlice and Bob engage in SGAU to obtain shares rA,k and rB,k

ïAlice and Bob engage in the SLOG protocol using the rA,k

and rB,k to obtain rA and rB

()ä=
k

k

TWXXP Ĕexplog)(log

108

IID data

ÅComputing the log likelihood of a sequenceof IID vectors

ÅInput:
Alice has a sequence of data vectors X= X0, X1, .. XT-1.
Bob has a mixture Gaussian

ÅOutput Alice and Bob get additive shares rA and rB such
that rA + rB = log P(X) = Si log P(Xi)

ÅHow:

ïFor each t
ÅAlice and Bob participate in SMOG to obtain additive shares rA,t and rB,t

of log P(Xt)

ïAlice computes rA = St rA,t, Bob computes rB = St rB,t

109

ÅάtǊƻōŀōƛƭƛǎǘƛŎ ŦǳƴŎǘƛƻƴ ƻŦ ŀ aŀǊƪƻǾ ŎƘŀƛƴέ

ÅA dynamical system for time-varying processes

A More Complex Model: Hidden Markov
Models

110

HMM Parameters

ÅThe transition probabilities
ïOften represented as a matrix

ïaij is the probability that when in state
i, the process will move to j

ÅThe probability pi of beginning at
any state si

ïThe complete set is represented as p

ÅThe state output distributions
ïWe will assume Gaussian mixtures

ïParameters are the parameters of the
GMM for each state

0.6
0.4 0.7

0.3

0.5

0.5

ö
ö

÷

õ

æ
æ

ç

å
=

5.05.
3.7.0
04.6.

A

111

Three Basic HMM Problems

ÅWhat is the probability that it will generate a

specific observation sequence

ÅWhat is the most probable state sequence, for

a given observation sequence

ïThe state segmentation problem

ÅHow do we learn the parameters of the HMM

from observation sequences

112

Three Basic HMM Problems

ÅWhat is the probability that it will generate a

specific observation sequence

ÅWhat is the most probable state sequence, for

a given observation sequence

ïThe state segmentation problem

ÅHow do we learn the parameters of the HMM

from observation sequences

113

ä -=
s

TsTotalprob)1,(a

The Forward Algorithm

ÅDefine

ÅInitialize

ÅRecurse

ÅFinally

)|()0,(0 sXPs spa =

ä -=
'

,')1,'()|(),(
s

sst atssXPts aa

114

))(,,...,,(),(10 ststateXXXPts t ==a

()ä -=
s

TsprobTotal)1,(logexplog log a

The Forward Algorithm in Log

ÅInitialize

ÅRecurse

ÅFinally

)|(loglog)0,(log 0 sXPs s+= pa

()ä +-+=
'

,'log)1,'(logexplog)|(log),(log
s

sst atssXPts aa

115

Alice and Bob: Secure Forward
Probability Estimation (SFWD)

ÅAlice has a vector sequence X = X0 X1é XT-1

ÅBob has an HMM: L= {A, P(X|s),p}

ïP(X|s) is a Gaussian mixture for all states

ÅOutput:

ïAlice and Bob receive additive shares rA and rB of

the forward probability of Xƻƴ .ƻōΩǎ Iaa

116

SFWD : STEP 1, State density computation

ÅInput: Alice has X = X0 X1é XT-1. Bob has GMMs

P(X|s) for all states s

ÅOutput: For all s, t, Bob obtains encrypted value

E[log P(Xt|s)]

ÅHow:

ïFor all t, s

ÅAlice and Bob engage in the SMOG protocol to obtain additive

shares qA(s,t) and qB(s,t) of log P(Xt|s)

ÅAlice sends encrypted value E[qA(s,t)] to Bob.

ÅBob adds qB(s,t) to it homorphicallyto obtain E[qA(s,t)+qB(s,t)] =

E[log P(Xt|s)]

117

SFWD : STEP 2, Forward Prob. Computation

ÅInput: Bob has transition probabilities log as,sΩfor all

s,sΩ ŀƴŘ ƛƴƛǘƛŀƭ ǎǘŀǘŜ ǇǊƻōŀōƛƭƛǘȅ ƭƻƎ ps for all s.

He also has encrypted value E[log P(Xt|s)] for all t,s

ÅOutput: Alice and Bob have additive shares rA and rB of

log P(X; L)

ÅHow:

ïΧΦ

ïContinued on next slide

118

SFWD : STEP 2, Forward Prob. Computation
Å Bob computes E[log a(0,s)] = E[log ps] E[log P(X0|s)] for all s

Å For all t > 0, s

ïCƻǊ ŀƭƭ ǎΩ .ƻō ŀŘŘǎ ƭƻƎ aǎΩΣǎhomomorphicallyto E[log a(t-мΣǎΩύϐ ǘƻ ƎŜǘ 9ώƭƻƎ

a(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ]

ïBob engages with Alice in SLOG.V2 with as input to obtain

E[log SǎΩa(t-мΣǎΩύ aǎΩΣǎ].

ïBob computes E[log SǎΩa(t-мΣǎΩύ aǎΩΣǎ] E[log P(Xt|s)] to obtain

E[log a(t,s)]

Å Bob and Alice engage in SLOG with {E[log a(T-1,s)] for all s} to obtain

additive shares rA and rB

rA + rB = log P(X ; L)

119

Three Basic HMM Problems

ÅWhat is the probability that it will generate a

specific observation sequence

ÅGiven a observation sequence, determine the

most probable state sequence

ïThe state segmentation problem

ÅHow do we learn the parameters of the HMM

from observation sequences

120

Estimating the state sequence

ÅFind the state sequence for which

Is largest

ÅDynamic programming again: The Viterbialgorithm

P o o o s s s(, , ,..., , , ,...)
1 2 3 1 2 3

=

121

The ViterbiAlgorithm

ÅLet G(t,s) = the log probability of the most probable state
sequence ending in state s at time t

ÅLet d(t,s) = the predecessor to state s at time t in the most
probable state sequence ending in state s at time t
ï I.e. the state at time t-1 in the sequence

Å Initialize:

ïG(0,s) = log ps + log P(X0 | s)

ÅFor t > 0

ïd(t,s) = argmaxsΩG(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ
ïG(t,s) = G(t-1,d(t,s)) + log ad(t,s),s + log P(Xt | s)

ÅFinal score:

ïP(most.prob.state.seq) = maxsG(T-1,s)

122

The ViterbiAlgorithm

ÅFinding the best state sequence via back-tracing

Å Initialize: The most probable state sequence at the final instant:

ïsT-1 = argmaxsG(T-1,s)

ÅFor t = T-1 down to 1

ïst-1 = d(st,t)

123

The Secure ViterbiAlgorithm (SVIT)

ÅAlice has a vector sequence X = X0 X1é XT-1

ÅBob has an HMM: L= {A, P(X|s),p}

ïP(X|s) is a Gaussian mixture for all states

ÅOutput:
ïAlice and Bob obtain additive shares rA and rB of the probability of the

most likely state sequence

ïAlice receives the actual state sequence

ÅLƴ ŦŀŎǘ !ƭƛŎŜ ŀƴŘ .ƻō Ŏŀƴ ƻōǘŀƛƴ άǎƘŀǊŜǎέ ƻŦ ǘƘŜ ōŜǎǘ ǎǘŀǘŜ
sequence as well

ïAlice receives a permuted IDs for states

ïBob retains permutations
124

The Secure ViterbiAlgorithm (SVIT)

ÅSTEP 1: Identical to Step1 of the SFWD (secure log
forward probability estimation)

ÅOutcome: Bob has E[log P(Xt|s)] for all s, t

125

SVIT: Step 2

ÅAt t = 0, for each s

ïBob computes E[G(0,s)] = E[log ps]E[log P(X0|s)]

ïHe shares it with Alice using SHARE so thatthey obtain
GB (0,s) and GA(0,s) where GB (0,s)+GB (0,s) =G(0,s)

t=0 E[G(0,s)]

GB (0,s) GA (0,s)
SHARE

GB (0,s)+GB (0,s) =G(0,s)

126

SVIT: Step 2

Åt > 0, for each s

ïCƻǊ ŜŀŎƘ ǎΩΣ .ƻō ŎƻƳǇǳǘŜǎ IB(t,s,sΩύ Ґ DB(t-мΣǎΩύ Ҍ ƭƻƎaǎΩΣǎ
ïAlice and Bob engage in SMV using HB(t,s,sΩύ όŦƻǊ ŀƭƭ ǎΩύ ŀƴŘ DA(t-
мΣǎΩύ ǘƻ ƻōǘŀƛƴ ǎƘŀǊŜǎ CA(t,s) and FB(t,s), such that
FA(t,s) + FB(t,s) = max ǎΩGA(t-мΣǎΩύҌIB(t,s,sΩύΦ

ïNote that FA(t,s) + FB(t,s) = maxsΩG(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ

t=0 E[G(0,s)]

GB (0,s) GA (0,s)
SHARE

GA (0,s)+GB (0,s) =G(0,s)

t>0 HB (t,s,sΩύ

FB (t,s) FA (t,s)
FA (0,s)+FB (0,s) =maxsΩG(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ

SMV

127

SVIT: Step 2

Åt > 0, for each s

ïAlice and Bob engage in SMI with HB(t,s,sΩύ ŀƴŘ DA(t-мΣǎΩύΦ

Alice obtains d(s,t)

t=0 E[G(0,s)]

GB (0,s) GA (0,s)
SHARE

GA (0,s)+GB (0,s) =G(0,s)

t>0 HB (t,s,sΩύ

FB (t,s) FA (t,s)
FA (0,s)+FB (0,s) =maxsΩG(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ

SMV

d(s,t)

128

SVIT: Step 2

Å t > 0, for each s
ïBob computes E[FB(t,s)] E[log P(Xt|s)] = E[FB(t,s) + log P(Xt|s)]

ïHe uses SHARE to share it with Alice, so that he gets GB(t,s) and Alice
obtains JA(t,s), such that JA(t,s) + GB(t,s) = FB(t,s) + log P(Xt|s)

t=0 E[G(0,s)]

GB (0,s) GA (0,s)
SHARE

GA (0,s)+GB (0,s) =G(0,s)

t>0 HB (t,s,sΩύ

FB (t,s) FA (t,s)
FA (0,s)+FB (0,s) =maxsΩG(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ

SMV

d(s,t)
E[FB (t,s) + log P(Xt|s)]

SHARE
GB (t,s) JA (t,s)

129

SVIT: Step 2

Åt > 0, for each s

ïAlice computes GA(t,s) = JA(t,s) + FA(t,s)

t=0 E[G(0,s)]

GB (0,s) GA (0,s)
SHARE

GA (0,s)+GB (0,s) =G(0,s)

t>0 HB (t,s,sΩύ

FB (t,s) FA (t,s)
FA (0,s)+FB (0,s) =maxsΩG(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ

SMV

d(s,t)
E[FB (t,s) + log P(Xt|s)]

SHARE
GB (t,s) JA (t,s)

GB (t,s) GA (t,s)

130

SVIT: Step 2

Å Alice and Bob perform SMV on GA(T-1,s) (for all s) and GB(T-1,s) to get additive shares
rA and rB of maxsG(T-1,s)

t=0 E[G(0,s)]

GB (0,s) GA (0,s)
SHARE

GA (0,s)+GB (0,s) =G(0,s)

t>0 HB (t,s,sΩύ

FB (t,s) FA (t,s)
FA (0,s)+FB (0,s) =maxsΩG(t-мΣǎΩύ Ҍ ƭƻƎ aǎΩΣǎ

SMV

d(s,t)
E[FB (t,s) + log P(Xt|s)]

SHARE
GB (t,s) JA (t,s)

GB (t,s) GA (t,s)GA (t,s)+GB (t,s) =G(t,s)

SMV

rB rArA +rB = max s G(T-1,s)

131

SVIT: Step 3

ÅT-1: Alice and Bob perform SMI. Alice obtains sT-1

ÅShe performs backtracingusing the d(t,s) she possesses

GB (T-1,s) GA (T-1,s)GA (T-1,s)+GB (T-1,s) =G(T-1,s)

SMI

sT-1

132

Learning model parameters

ÅGMM parameters:
ï!ŘŀǇǘƛƴƎ .ƻōΩǎ Daa ǘƻ !ƭƛŎŜΩǎ Řŀǘŀ

ÅOnly adapt means

ïOutcome: Bob gets Encrypted means mk for
each Gaussian

ï(Pathakand Raj, Interspeech2011)

ÅHMM parameters

ïSimilarly complicated

ï(Smaragdisand Shashanka, IEEE TASLP, May 07)

133

Applying it to speech..

134

Speaker Identification

Speaker Verification

Speech Recognition
You said

έƘŜƭƭƻΣ ǿƻǊƭŘΗέ

A Brief Primer on Speech Processing
Tasks

Which one of
Alice, Bob, Carol,
5ŀǾŜΣ Χ are you?

(multi-class)

Are you really
Bob? Yes/No

(binary)

ÅAll are pattern classification tasks
ÅNot addressing secure communication of speech (much literature on this topic).

Biometrics

135

Common Aspect: Pattern Recognition

ÅAll cases are treated as statistical pattern classification

ÅUsually performed through a Bayesclassifier

ïLet P(X|C) be the probability distribution of class C

ÅP(X | C) usually a parametric model: P(X | C) = P(X; LC)

ïLCare the parameters of the class C

ÅP(C) represents the a priori bias for class C.

ÅThe difference between the applications is in the

candidate classes in C and the model P(X; LC).

)(log);(logmaxargĔ CPXPC CC +L= ÍC

136

Feature Computation

ÅDo not work on speech signal

ïWork on sequence of feature vectors computed from speech

ÅE.g. MFCC vector sequence

ÅάǎǇŜŜŎƘ ǊŜŎƻǊŘƛƴƎ ά Č sequence of feature vectors derived
from it

ïX is actually a sequence of feature vectors

ÅX = [X0 X1Χ ·T-1]

ÅFor the privacy-preserving frameworks we will assume that
ǘƘŜ ǳǎŜǊΩǎ ŎƭƛŜƴǘ ŘŜǾƛŎŜ Ŏŀƴ ŎƻƳǇǳǘŜ ǘƘŜǎŜ ŦŜŀǘǳǊŜǎΦ

137

Biometric Applications

ÅBiometric applications deal with determining the

identityof the speaker.

ÅHere, the set C is the set of candidate speakers

for a recording

?

138

ä +L= Í

t

CCtC XPC q);(logmaxargĔ
C

Biometric Applications

ÅTypically, the individual vectors in a recording
Xare assumed to be IID

ÅThe distribution of vectors is assumed to be a
Gaussian mixture

ÅThus, for any speaker S in C, P(X; LS) is
assumed to have the form

() ()()ä ä -Q--
Q

=L -

t k

kStkS

T

kSt

kS

D

kS

S XX
w

P ,

1

,,

,

,
5.0exp

||)2(
log);(log mm

p
X

139

Biometric Applications: Speaker ID

ÅCƛǎ ŀ ǎŜǘ ƻŦ άŎŀƴŘƛŘŀǘŜέ ǎǇŜŀƪŜǊǎ ŦƻǊ ŀ

recording

ïParameters of their models are learned from data

for the speaker

ÅThe set CƳŀȅ ƛƴŎƭǳŘŜ ŀ ά¦ƴƛǾŜǊǎŀƭέ ǎǇŜŀƪŜǊ

ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ άƴƻƴŜ-of-the-ŀōƻǾŜέ ƻǇǘƛƻƴ

ïThe parameters LU for the universal speaker are

learned using data from many speakers

ïLU is often called a Universal Background Model
140

Biometric Applications: Speaker
Verification

ÅA user claims an identity S

ÅSystem must confirm if the user is who they

claim they claim to be

ÅC consists of S and universal speaker U

ïThe parameters LS for speaker S are obtained by

adapting LU to data from the speaker S

141

Recognition Applications

ÅC represents the collection of all possible
word sequences to be considered

ÅP(X; LC) is represented by an HMM

)(log);(logmaxargĔ CPXPC CC +L= ÍC

142

Isolated Word recognition

ÅHMMs for every word to be

recognized

ÅThe probability of the recording

is obtained with each HMM

ÅThe most likely HMM represents the word

that was spoken

ïA priori probabilities to words may be applied

Word 1

Word 2

Word 3

143

Phrase Spotting

ÅHMMs for every phrase to be spotted

ïtƭǳǎ ƻƴŜ ŦƻǊ ǘƘŜ άƴƻƴŜ ƻŦ ǘƘŜ ŀōƻǾŜέ

ÅAt each shift, all HMMs are evaluated

ÅThe most likely HMM represents a phrase that
may have occurred

Phrase 1

Phrase 2

None of the above

144

Continuous Speech Recognition

ÅThe set of all sentences is represented as a graph

ïLoopy graph for unrestricted speech

ÅThe HMMs for the words are embedded in the graph

ÅThe most likely state sequence is obtained using the Viterbi
algorithm

ïThe word sequence can be derived from the state sequence
145

