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A recent article

A http://www.technologyreview.com/news/428
053/wipingawayyour-siri-fingerprint/

A Your voice can be a biometric identifier, like
your fingerprint. Does Apple really have to
store It on Its own serveps

I David Talbot
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A recent article

A http://www.technologyreview.com/news/428053/wipin@away:
yvour-siri-fingerprint/

I By David Talbot

OX peopleusingApple'sdigital assistantSirisharea distinctconcern
Recordingf their actual voices,asking questionsthat might be

personaltravel to a remote Appleserverfor processingThenthey
remainstoredthere; Applewon't sayfor howlong.

That voice recording, unlike most of the data producedby smart
phonesand other computers,is an actual biometric identifier A
voiceprint if disclosedby accident, hack, or subpoena can be
linked to a specificperson And with the current boom in speech
recognitionapps Appleisn'tthe onlyoneamassingsuchdata.
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The Issues

[ o=

Siri

Use your voice to send
messages, set reminders,
search for information,
and more.

A SIRI (or a hacker who breaks into SIRI) can
I Use (edit) your voice recordings to impersonate

I Learn about you
A Your identity, gender, nationality (accent), emotional state..

I Track you from uploads / communications of voice recordings

A Nothing specific to SIRI

A Not a futuristic scenario
I Everytimeyou use your voice, you leave a print behind!!



Not an Implausible Scenario
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I Lel,Choj Janin Friedland ICASSP 2011
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I Used voiceprints of speakers in audio track to find
them in other recordings



More problems

m Speech Recognition System
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A Doctors / Lawyers Govtagencies wish to use a speech
recognition service

i . dzi OHIBARIAws prevent them from exposing the data

A Speech data warehouses could be mined for useful market
patterns

I But the audio also contains recordings of people reciting their credit
card numbers, social security numbers etc..



A Security Problem

A ABC NEWS Oct 2008

A Inside Account of U.S. Eavesdropping on
Americans

Despite pledges by President George W. Busl
and American intelligence officials to the
contrary, hundreds of US citizens overseas

have been eavesdropped on as they called
friends and family back home...



The Problem

A Security: NSA must monitor call for public safety
I Caller may be a known miscreant
I Call may relate to planning subversive activity

A The gist of the problem:
I NSA is possibly looking for key words or phrases
ASAR 6S KSIFNJ ao62Yo0o GKS LISyal 32
I Or if some key people are calling in
A Was thatAymanal %2 ¢ | KdicRA Q a

A But must have access &l audio to do so
I Including recordings by perfectly innocent people



Privacy Preserving Voice Processit

A Problems are examples of need faivacy preserving
voice processing algorithms
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historically been done by voice

A Voice is considered a very private mode of
communication
I Eavesdropping is a social-no

I Many places that allow recording of images in public
disallow recording of voice!

A Yet little current research on how to maintain the
privacy of voice ..



The History oPrivacy Preserving
Technologiedor Voice
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The History oCounter Espionage
against Private Voice Communication
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Parameterization Is not Privacy

AcCclLtfl Oy CSIF GdzNBa SEGNI ¢
audio

A Merely parameterizinghe audio into features does
not solve the problem

I Features can be used to classify identity, gender,
nationality etc.

I Theycanbe used tasynthesizespeech
A Even fake recordings the user never spoke

Aadt NPOSOUAY3TE FFdzRA2 YSSRaA



Distortion is not Privacy

Al'l @S 6S | OQldzr ffé& aKARRSYE
I No, cadence gives it away.
I No, pitch shift can be undone.

A Have we hidden the content?

T Not at all..
13



Signal Processing is not the Solution

A Signal modification is not a solution in most
situations

A Simple parameter extraction is not a solution



The NSA Problem as a Metaphor

A Telephone company unwilling to expose
audio to NSA

I May provideencrypteddata to NSA

A NSA cannot expose what it is trying to find to
the telephone company

I May provide it inencryptedform though



Abstracting the problem
o AR OB
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A Data holder willing to provide encrypted data
I A locked box

A Mining entity willing to provide encrypted keywords
I Sealed packages

A Must find if keywords occur in data

I Find if contents of sealed packages are also present in the locked bo»
A Without unsealing packages or opening the box!

A Data are spoken audio

16



Basics: Cryptography 101

A Messages and Encryption

Encryption Decryption
Key (K) Key (K)
l l Original
lai ' Plaintext (M
Plaintext (M)> Encryptior? Clphetext (C) Decryptioﬁ\ Alntext >)
EKl() J DK2(') J
E.(M)=C Dy,(C) =M

A Good Cryptosystem all the security inherent in the knowledge of
keys, and none in the knowledge of algorithms
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Basics: Cryptography 101

A Symmetric Cryptosystem _

I Encryption key can be calculated from the decryptio
1Sé YR OAOS OSNAI 627F(

Encryption Decryption

Key (K) Key (K)
l l Original

Plai M ' Plaintext (M
aintext ( L[Encryption\ Ciphetext (C){Decryptioﬁ Aintext >)

0 00 |
E,M)=C D, (C) =M
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Basics: Cryptography 101

A Publickey (asymmetric) Cryptosystem
I Different keys for encryption and decryption

Encryption Decryption
Key (K) Key (K)
l l Original
lai ' Plaintext (M
Plaintext (M)> Encryptioﬁ Clphetext (C) Decryptioa Alntext >)
"0 00 |
E.(M)=C D,(C) = M

First described In
(Diffieand Hellman, 1976)




Tools and Background

A Can cryptographfpelp?

Typical security scenargprevent unauthorized access

20



Tools and Background

A Can cryptographielp?

—

Tl
’ W)

Private

Private

The problem we face preserve privacy

A YES!
I Next: a practice exercise to show how..
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An practice exercise In hiding
iInformation

A First: a simple pattern matching problem

A Explains
I Typical problem setup
i Typical procedure
TOELX FAYA | AGLINAYAUGAOSE
I Highlights issues




A Musical Conundrum

A Alice has just found a short ple/cé of music on the
web

I Possibly from an illegal site!

A She likes it. She would like to find out the name
of the song

23



Alice and her song

A Bob has a large, organized catalogue of songs

A Simple solution:
I Alice sends her song snippet to Bob
I Bob matches it against his catalogue

I Returns the ID of the song that has the best match to
the snippet



What Bob does

SEAVAVALAVAS A2
S, AN
S, MWW MANAA
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A Bob uses a simple correlatidrased procedure
A Receives snippet W = w[0]..w[N]
A For each song S

I Ateachlagt
A Finds CorrelatioWy,S,) =S, w[i] st+i]
I Score(S) = maximum correlationax Correlation\V,S,)

A Returns song with largest correlation.



What Bob does
S_L’\/\/\’\’\/"\’\f AN\ W
Ss «MM/\M\,NM
aﬂvaMNW

(WBob uses a simple correlatidrased procedure
WRecelives snippet W = w[0]..w[N]
WFor each song S

o Ateachlagt
A Finds Correlation(W,S,t)Srwli] s[t+i]
o Score(S) = maximum correlation: m#&orrelation(W,S,t)

WReturns song with largest correlation.
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What Bob does

S, MWW MANAA
) AVAWA MM

A Bob uses a simple correlatidrased procedure
A Receives snippet W = w[0]..w[N]
A For each song S

I Ateachlagt
A Finds CorrelatioWy,S,) =S, w[i] st+i]
I Score(S) = maximum correlationax Correlation\V,S,)

A Returns song with largest correlation.



What Bob does

S, /\N\/\/\/\/\M/\/\/V\ Corr(W $0)

A Bob uses a simple correlatidrased procedure
A Receives snippet W = w[0]..w[N]
A For each song S

I Ateachlagt
A Finds CorrelatioWy,S,) =S, w[i] st+i]
I Score(S) = maximum correlationax Correlation\V,S,)

A Returns song with largest correlation.
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What Bob does
S AN/ NN~ /\/\/\/\W

SZ/\/‘/\/""\/"\NJ\"’\M
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A Bob uses a simple correlatidrased procedure
A Receives snippet W = w[0]..w[N]
A For each song S

I Ateachlagt
A Finds CorrelatioWy,S,) =S, w[i] st+i]
I Score(S) = maximum correlationax Correlation\V,S,)

A Returns song with largest correlation.



What Bob does
SEVAVASAVAS V2 /\/\/\/\W

(o]
mrr(WN
S1 AAVAWANVV A o s D

Corr(W, § 2)

o

A Bob uses a simple correlatidrased procedure
A Receives snippet W = w[0]..w[N]
A For each song S

I Ateachlagt
A Finds CorrelatioWy,S,) =S, w[i] st+i]
I Score(S) = maximum correlationax Correlation\V,S,)

A Returns song with largest correlation.



What Bob does

MAX

Cor(W, §,0) Cor(W, §, 1)

Cor(W, S, T)

SEAVAVALAVAS A2
S, AN
S, MWW MANAA
Su AAVAWANNVN

A Bob uses a simple correlatidrased procedure

A Receives snippet W = w[0]..w[N]
A For each song S

I Ateachlagt
A Finds CorrelatioWy,S,) =S, w[i] st+i]

I Score(S) = maximum correlationax Correlation\V,S,)

A Returns song with largest correlation.

C1




What Bob does

S /\/\/\Jv\/"\v Cor(W, S, 0) Cor(w,S,1) 0 @ Cor(W, S, T) c1l
S NS/ NN ConW,S,0) Con(W.,S,1) 00 @ Cor(W,S, T) c2
3 W\N\/\'V\/‘NM Cor(W,S, 0) Cor(w,S,1) ©0 @ Con(w, s, T) C3
o O
0o 0
Su /\/\/\/\/\/\/\/\/\/\/\/V‘ Cor(W,S,0) Corn(W,S,1) © o @ Cor(W, S, T) CK
ARGMAX| | M

A Bob uses a simple correlatidrased procedure
A Receives snippet W = w[0]..w[N]
A For each song S

I Ateachlagt
A Finds CorrelatioWy,S,) =S, w[i] st+i]
I Score(S) = maximum correlationax Correlation\V,S,)

A Returns song with largest correlation.
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Alice has a problem

5 > =
/ /
\ |/
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A Her snippet may have been illegally downloaded

A She may go to jail if Bob sees it
I Bob may be the DRM police..

33



An Unacceptable Solution

A Alice distrusts Bob
i {2X

A Bobcould send his catalogue to Alice to do the matching
herself..

I Really??
i.20Qa OFGOFf23dzS Aa&a KAa Lto
I Alice may be a competitor
AhNI I Yt AOA2dza LISNB2Y gl yiaAy3a i

A Bob distrusts Alice
I Will not send her his catalogue
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A Alice could encrypt her snippet and send it to
Bob

A Bob could work entirely on the encrypted data
I And obtain an encrypted result to return to Alice!

A A job for Secure MuHlparty Computation



Secure Multiparty Computation (SMC

A A group of untrusting parties desire to
compute a joint function of their private data

A Ideal situation: All of them send their data to a
trusted third party

I Who computes the function
and only reveals results

Trusted Third Party
O

Ideal Model



Practical SMC

A Parties communicate directly with one another
following specified protocols

Ahdzi O2YS ARSIffteé ARSYUOA
I Function computed without revealing data

A Protocol A sequence of steps, involving two or
more parties, to accomplish a computational task



Typical Assumptions

A Parties aresemihonest, i.e. hones

ut-curious

I The party tries to get as much information from the
result and outputs of intermediate steps

I However, the party does not act maliciousig.(by

lying about the inputs used)
AThey follow the protocol correctly



Tools for SMC

A Homomorphic Cryptosystems
A Masking

A Oblivious Transfer



Tools for SMC

A Homomorphic Cryptosystems
A Masking

A Oblivious Transfer
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Homomorphic Encryption

A Allows for operations to be performed on
ciphertextswithout requiring knowledge of
corresponding plaintexts

Ex)e E(y) = Eax y)

Ronald L. Rivest, Leonard Adleman, and Michael L. Dertouzos. On
data banks and privacy homomorphisms. In Foundations of Secure
Computation, pages 16g-180, 1978b.



Homomorphic Encryption

| can evaluate f(.
as a service

E(x) & Ely) = E(x@vy)

' E[X] N ‘J’
- S—
E[f(x)]

42



Fully Homomorphic Encryption (FHE)

A Fully Homomorphic ability to computearbitrary
functions over plaintexts

I Unclear whether fully homomorphic schemes were
even possible until 2009

I Breakthrough work by Gentry (2009, 2010); not very
practical but an active area of researdla(teret
al.,2011).



PartiallyHomomorphicencryption

A Allowssomeoperations to be performed on
ciphertext

A Additive HomomorphismPaillier



PaillierEncryption

A Public key encryption scheme ( Padeaillier Eurocrypt99).
, X
E[X]" 9

A Important properties:

A Homomorphicaddition
I Can add a number to an encrypted number without decryption
I Toadd Y to X, given E[X]:

E[X]E[Y]” g”g" =g"" =E[X +Y]

A Homomorphicmultiplication:
I Can multiply an encrypted number without decryption
I To multiply X by Y, given E[X]

EX]Y " (g%) =g =E[XV]

45



Homomorphic Encryption In Practice

A FHE is not practical

A SMC permits computation of arbitrary
functions usingpartially homomorphic
encryption through collaborative computation



Returning to Alice and Bob

47



Correlation is the root of the problem

-

A.20 YSSRa !''fA0SQa ayAaLIWISa G2 C
A The correlation operation is as follows
I Cor(W,S,) =S wJi] sft+i]

A This is actually a dot product:
T W =[w[0] w[2] .. W[N]

i §=[s[t] s[t+1] .. 4FN]]T
I Cor(W,S,)) = W.§

A Bob can compute Encry@pri(W,S,}] if Alice sends hirgncrypt[W]

A Assumption: All data are integers

I Encryption is performed over large enough finite fields to hold all the
numbers



{2T @AY 1 £ AOS

Alice generates public and private keys. She sends the public key to Bob

Sheencryptsher snippet using her public key and sends it to Bob:
i AliceA . 20 Y 9yOw28 T 9y Ows wne e 9y O

Bob can comput&ncCor(\W,S,)] =Enc B, w[i]s[t+1]] homomorphically

For each sample : Bdtomomorphicallymultiplies wj] with sft+i]
Enc[wif]]st*] = Enc[wi]s[t+i]]

Hehomomorphicalyadds the samplavise products

P. Enc[wi]s[t+i]] = Enc$ w[i]s[t+i]]

=EncCor(W,S,)]

.20 OFy O2YLMziS GKS SYONERLISR O2NN
without needing even th@ublickey
The above technique is tif&ecure Inner Product (SlYptocol

49



Primitive: Secure Inner Product (SIP

A Alice has vector X. Bob has Y.

A Outcome:
I Bob has Enc[X.Y]

A How: (I L
I Alice sends E[X] to Bob
i Bob computes E[X.Y]J”= E[X"

THIS IS ATYPICAL PROTOCOL TO COMPUTE
A PRIMITIVE OPERATION SECURELY

50



What Bob does
SIAVAVASAVAS VA W

i

A At eachshift, Bob compute&ncCor(W,S,)].

A To obtain an encrypted correlation value at
that shift



What Bob does

SEAVAVA LA VAN W,

AV AV VN

S, '\/\/V\’\/\'\/\/J\/\'\'\/\
0 \/
(o]

St ANAAWANWVVN T conwi$ 1)

A At eachshift, Bob compute&ncCor(W,S,)].

A To obtain an encrypted correlation value at
that shift



What Bob does
SIAVAVA A VARAZ W

N

%WV\/\/\I\/\/J\"’\/V\
o
o

3\4/\/\/\/\/\/‘/\’\’\/\/\/\" e“)’ e“’ cgr@/,gl,z)

® e & & ® ®

A At eachshift, Bob compute&ncCor(W,S,)].

A To obtain an encrypted correlation value at
that shift



What Bob does

\%I

SIVAVA AV 2 ) Ve

i

~ ~ (7 LA NN

A For each song

I At each shift

ABob obtains aencryptedcorrelation
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SEAVAVALAVAS A2
S, AN
S, MWW MANAA
Su AAVAWANNVN

A Bob eventually getencryptedcorrelations at each lag for each

song

What Bob Gets

MAX

w w w W w 000000

o °® o °® o °® ° ® ° (]

w w w W w 000000

o °® o °® o °® ° ® ° (]

w w w W w 000000

o °® o °® o °® ° ® ° (]

O
o

w w w w w
e 2 & 2 & 2 & 2 & @

?

ARGMAX

?

A He must find the ID of the song with the largest maximum

correlation

A But how does he compute the max correlation for each song?

or argmaxacross songs?
Since everything is encrypted..
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Bob Tries to Solve the Problem

A.20 OFly Syftarad !'fA0SQa K.
A Bob ships the encrypted correlations back to Alice

I She can decrypt them all, find the maximum value, and
send the index back to Bob

I Bob retrieves the song corresponding to the index

A Problemc Bob effectively sends his catalogue over to
Alice

I Alice can determine what songs Bob has by comparing the
correlations to those from a catalog of her own

A Even if Bob sends the correlations in permuted order

A. 20 ySSRa !'fA0SQa KSf L
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Bob and Alice Collaborate without Trus

A Bob has encrypted correlations

A He (or Alice) must find the ID of the largest
correlation without either knowing the
correlations

A. 20 FTANRIO GdakKlINBag OF
A Then he and Alice collaborate with their
shares to find the max. ID (or value)

57



Tools for SMC

A Homomorphic Cryptosystems
A Masking

A Oblivious Transfer



Bob Shares his Data

BOB ALICE n

v E[S

A Bob has a collection of encrypted values
I Correlations here
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Bob Shares his Data

o8 e 8
@

1,
Iy v E[S-r]
[ &
2. |
5y Bob MASKS the correlations
r & - ) .
. s B[Sl with random noise
3. -
I v E[S 14
£
K, @
% v  E[S 1
[ &

A Bobhomomorphicallysubtracts noise from each value
I And also separately retains the noise
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Bob Shares his Data

o8 e 8
P

Iy v E[S-1]
[ &
2. -
2 v  E[S ]
[ &
K S—
I's v E[S1q
[
Ke -
Mk v E[&rd
[ &

A Bob sends the Encrypted numbers to Alice
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Bob Shares his Data

BOB ALICE n

Iy S-r
2 S- 1,
I S I3

®

®

®

®
e X Tk

A Bob sends the Encrypted numbers to Alice
I Who decrypts them to get the plaintext numbers

I Neither Alice nor Bob know what the actual correlations
are at this point
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Bob Shares his Data

BOB ALICE n

Iy S-r

*  THESHARPROTOCOL *"

s Bob converts his encrypted Syl
numbers to plaintext shares
with Alice

Mk X Tk

A Bob sends the Encrypted numbers to Alice

I Who decrypts them to get the plaintext numbers

I Neither Alice nor Bob know what the actual correlations
are at this point
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Bob and Alice Collaborate without Trus

A Bob has encrypted correlations

A He (or Alice) must find the ID of the largest
correlation without either knowing the
correlations

A. 20 FTANBRO daaKINBa¢ OFr
A Then he and Alice collaborate with their
shares to find the max. ID (or value)
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The Secure Max Protoc

1

BOB ALICE
r Sy
" S,
3 S 13
rk Xk
A. 20 KIFa aNE O f dzSa
Al £t AOS-NE I &I @& fzS a
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The Secure Max Protoc

1

BOB ALICE
EBob[rl] %’ I
EBot{rZ] SZ- I
EBot{rS] %— I3
EBotIrK] S(' Ik

ABobSY ONE LJG &4 U KShisownNE @I
encryption
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The Secure Max Protoc

1

BOB ALICE
EBollrl] %’ I
EBotIrZ] S-r,
EBotIrGI] %’ I3
EBotIrK] SK' Ik

ABobSY ONE LJi & { K ShisowdEncrgptioh dzS :
I And ships it to Alice
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The Secure Max Protoc

BOB ALICE

EBok{r1+§' rl] = EBotI%J

EBotIr2+%' rz] = EBot[SZ]

EBotIr3+%' r3] = EBotlsa]

EBotIrK_'_SK' rK] = EBot{SJ

A BobSYy ONE LJi & K ShisowkEncrgbtioh dzS &
I And ships it to Alice
I Who adds her own numbers to thenomomorphically

I To end withEncryptedS values she cannot read .



The Secure Max Protoc

BOB P,. ALICE

1

Bod Sidl

14

Bood Sl

Bood S/

Bood S|

A Alicepermutes her data
I To change or order of the data
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The Secure Max Protocols

BOB q Ppe ALICE n

14
EBodSM'q]

1

EBokISl'q]
v

EBokIqu]

EBokISl'q]

A Alicehomomorphicallysubtracts a constant
noiseq
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The Secure Max Protoc

BOB P,. ALICE

1

EBOlJ:Sl4-q] q
1

EBotISl'CI]
v

EBotISfCI]

EBotISl'q]

A Alicehomomorphicallyadds a constant noisg
A and ships it to Bob
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The Secure Max Protoc

BOB P,. ALICE

1

g

S44

S-q

S

S-q

A Alicehomomorphicallyadds a constant noisg
A and ships it to Bob
A Who decrypts it

12



Outcome so far

Order ' J l

I Bob has the correlations in permuted order

a4 A Only Alice knows the permutation
I He does not know which correlation is from which sonqg
S-q P alice
A Value
S-q I True correlation values are hidden from Bob by an 9
. additive constant
: A known to Alice
S-q A B"ut

I Bob and Alice can collaborate to find the maximum S
value

I Bob and Alice can collaborate, so that Alice learns the
iIndexof the max value



SMV : Finding th®dax Value

A Bob finds the maximum of his data

A Outcome:
T Bob haﬁD_MaX-q

I Alice has q
I Alice and Bob have random additive @

S-q

| b Mmaxd I

shares of the maximum valu§, .,

A The sum of their results is the maximum
correlation

A Alice and Bob have performed the
G{ $OdzNB Y EAYdzy o f
protocol
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S-q /
A Bob finds thdndex ofmaximum of his data

SMV : Finding th®ax Index

n

I:’Alice(l D_MM

I:)Alice

/éve It

i 1S OFy R2 UKA& AY &LAUGS |ppax @lié
i . dzi GKS AYRSE @I fdzS A& LisSNIdzi S
permutation
A{2 .20 R28ayQil NBIff& 1y26 Al
A He sends the result to Alice
A Whounpermuteghe value to get theactual index
of the largest input!
A1ftAOS FyR 20 KIF@S LISNF2N)XYSR
YFEAYdzZY LYRSEé¢ {alL LINR(G2O02f
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The Secure Max Protocols

BOB ALICE n

A Input: Bob has vector X

Alice has vector Y A h
A Output e
A SMV ST
i Bob and Alice end up with additive
shares of .
max X+ Y Sc T
A SMI
T Alice finds

argmax X + Y



Retrieving the Song

Al f AOS Kla 0KS L5 2F GKS
matches her snippet.

A She can send this ID to Bob and he can return the
metadata for that song

A Problem:

I Alice cannot simply send the index of the best song to Bob

I It will tell Bob which song it is
A The song may not be available for public download
AL®dSd 1 £t A0SQa ayALIISG Aa AttS3AL
Ali.e.



Retrieving the Song

I
I o
T ST
EERZA

= Vgl
& YN




Tools for SMC

A Homomorphic Cryptosystems
A Masking

A Oblivious Transfer



OBLIVIOUS TRANSFER (OT)

BOB ALICE n
E[]

E[ID_Ma}  — ID_Max

A Alice encrypts the ID with her key and ships it
to Bob
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OBLIVIOUS TRANSFER (OT)

BOB ALICE n

E[M, + r(ID_Max-1)]

E[M, +(ID_Max2)] A For each song,Bob

E[M, + r(ID_Max-3)] I Homomorphicallycomputes
. Enc|D_Maxci]

E[M, + rK(.I D_Max-K)]

I Homomorphicallymultiplies that by a
random number to get

Meta data for the Encl;(ID_Maxi)]
I-th song is M B

I Homomorphicallyadds the meta data
M;to the result to get:
Note: For ONLY the song with id :
| = ID_Max Enc[M +r,(ID_Maxi)]

The result = Enc[Mi]
81



OBLIVIOUS TRANSFER (OT)

BOB

A Bob Ships this to Alice

Note: For ONLY the song with id
| =1D_Max
The result = Enc[Mi]

ALICE n

E[M, + r(ID_Max-1)]

E[M, + r,(ID_Max-2)]
E[M, + r,(ID_Max-3)]

E[M, + rK(.I D_Max-K)]
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OBLIVIOUS TRANSFER (OT)

ALICE
E[M, + r(ID_Max-1)]
J E[M, + L,(D_Max-2)]
E[Mp wax* H(ID_MaxcID_Ma)]

E[M, + rK(.I D_Max-K)]

A Bob Ships this to Alice

A Alice decrypts théD Maxth entry
I For this entryr, (ID_Maxg k) = 0, so she gets the correct result
I Decrypting the remaining is pointless
A She only gets W+ (ID_Max¢] U = GKAOK A& aYl &
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ODblivious Transfer (OT)

Sender
[+ o) (6% i""‘l'-;'

Chooser

< Send two public keys KEnd K

Choose a symmetric key K

Sendg,(K) > Decrypts with both private keys
02 204t yYRYYQ
Sendg ¢4x,) fora™ (0, 1)

Canbe generalizedo 1-out-of-n OT
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dzii Al Aay Qi

A AssumptionHonest but curious

I Alice and Bob follow the protocols

V4

A2 KIO0 AT (GKSé R2y QUK
I If Bob sends Alice bogus numbers at any point hel
results would be wrong

I Bob and/or Alice could use bogus intermediate
results to learn more about one another



Zero Knowledge Proofs (ZKPSs)

A SMC protocols for serfionest behavior can
be augmented with ZKPs appropriately to be
secure under malicious behavior

AZKP :
i 0Provee Kl & a2YS AYyTF2NXNI 0
FAO+SNAFTFASNE glyida a2 Sy
I ButProverwill not reveal information to Verifier
I She can use ZKPs to convince Verifier



Zero Knowledge Proofs (ZKPSs)

A Peggy has a magic word to open a secret doo
In a cave

A Victor wants to pay for the secret, but not
dzy 0 Af KSQa adzaNBk aKS |

A Peggy will tell the secret but not until she
receives the money




Zero Knowledge Proofs (ZKPSs)

Al aadzyS GKFGO tS33eéeQa Ay F2NXE
problem

A Peggy converts her problem to an isomorphic one
A Peggy solves the new problem and commits answer
A Peggy reveals the new instance to Victor

A Victor asks Peggy either to

I prove the instances are isomorphic; or
i 2LISY (0KS O2YYAUUSR yasgSN | yR
A Repeain times

A Typical hard problems: finding graggomorphismsor
Hamiltonian cycles (Nebmplete problems)



ZKPs In Homomorphic Encryption

A Bob and Alice can ensure each step of their
protocol through ZKPs

I E.g. throughhresholdencryption schemes

%- AWhich involve secret sharing and ZKP n
4

¢ \\
EDE N ¢

A High overhead: Computation time can
Increase by several orders of magnitude

A In general, in the rest of this talk we will
assume honesbut-curious parties



., dzi AU AaUAff

A9ogSy AF 6S a4SOdaNBE SOSNEBIKAY3IX

A At one stage Bob hasP ,;..[ Cort(W,s,d-q] for all s
I He can compute histogram@ori(\W,s,d-q)

ALFT 'ftA0SQa ayALIWISG A& Ay KAaa OFal
estimate
i For each snippet of each song in his catalog
i Correlate snippet with entire catalog
I Compute histogram of correlation values
i/ 2YLI NS KAa023aINrY G2 KAad23aIN» Y TN

Ve ~
.

AwSgSrta ljz GKS AYyRSE 27F (K az2y3

A Solution: Alice only sen@or(W,s,) for randomized subsets of s and t



| essons Learned

A Possible to perform complex collaborative
operations without revealing information!

I Through careful use of cryptographic tools

A lllustrates a few concepts
I Homomorphicencryption
I SMC
I Oblivious Transfer

I Primitives



Learned abouPrimitives

A General format: Computingimplefunction
Fo-X, 0 2F !'fA0SQa LI

5

private data Y

A One of the following outcomes:

I Both parties get random additive shares of the

ratrg =f(X,Y)

result

A Alice getsr, Bob getsy

E[f(X,Y)]:

A Actual result f(X,Y)r5+rg

f(X,Y)

I One party gets aencryptedversion of the
result Enc[f(X,Y)]

I Theintendedparty gets the complete result
f(X)Y)
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Examples of Primitives

A Secure inner product
i f(XY) = <XY>
I Also possible if Bob has E[Y]

A Securamax
T fOY) =maxx+Y)

A SecuremaxID
I fOX)Y) -mrgmax X + Y

A Several protocols proposed for max primitives (in particular) in the
literature
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ThelLogsum

A P(X)=S P(XX,i)
A S =log PK,i)
A Want to compute
log (P(X)) = logG P(X1))
= log(S exp(3))

A More generally
I 5 =log(z)
I Want to compute
log (7, + 2z, .. ) = log (exp(g) + exp(g)..)



The SecuréogsunSLOG

A Input: Alice has vector X. Bob has vector
I % +y; =log &)

A Output: Alice and Bob obtaip andrg
such thatr, +rg=1og § z)

A How: rA+rB:||n S 2)
I Alice chooses, at random. '
I She computes Q = exp{X,)
I Bob computes S = exp(Y)
I Alice and Bob perform SIP to obtaip andug such that
Uptug = Q.S =S exp(X+ ¥ =Sz expfy
I Alice sendsi, to Bob, who computes
rg = logUattg) =1y +100S; Z



Computation with Primitives

ALICE

ALGORITHM

A Conventional computation: User Alice sends data to system Bob
A Bob computes an algorithm

~ b
N
¥ Step 1 Step 2 Step N J
. e 7\BOB
~

+ ALGORITHM |

; DBUD

A SMC: Computatibn recast as a sequence of primitives
A Alice and Bob compute primitives via SMC
A Bobgets the result

96



Other tools and technigues

A Garbled circuits:
I Cast computation of functions as Boolean circuits

I Employ OT to permit parties to compute theuciton
private input

A Secret Sharing:

id{ KINB¢ | RIFddzy 5 | ONRa&aa
N of them are required to collaborate to reveal D

A Other similar tools



Part Il: Dealing with speech




Automatic Speech Processing
Technologies

A Lexical content comprehension
I Recognition
A Determining the sequence of words that was spoken
I Keytermspotting
A Detecting if specified terms have occurred in a recording

A Biometrics and notexical content recognition

I ldentification
A Identifying the speaker

I Verification/Authentication
A Confirming that a speaker is who he/she claims to be

A All of these involvstatistical pattern classification



Secure Probability Computation

A Alice has data X

A Bob has garamtericprobability distribution with
parametersL

A Alice and Bob want to compute P(X);
I Without revealing X to Bob ar to Alice

A Types of distributions most commonly used in speech
and audio
I Gaussian Mixtures
I HMMs

100



Computing a Gaussian

3 1 exol- 0. T~y
PO = xpl- 05(X - ) Q*(X - )

A Xis any feature vector

A mis the mean of the Gaussian

A Qs the covariance matrix

A D is the dimensionality of the feature vector

A Thelog Gaussiarof a vector

logP(X) =-0.5Dlog2p - 0.5log|Q|-05(X - m' QXX - m)




Log. Gaussians

A Computing log likelihood of a vector

logP(X) =-0.5Dlog2p- 0.5log|Q

-05(X - m'Q (X - m

A Can be rewritten as

log P(X) :[XTl]g )

& 05Q°

Q 'meXg
C Wlu

Awhere [c=-05Dlog2p- 05mMQ

Let X =€X2 log P(X) = X WX

ely




Log. Gaussians

log P(X) = X WX

logP(X) = a X X W

A N

log P(X) = YE'W

A The log Gaussian can be expressed as an inn
product



The Secure Log Gaussian (SGAL

log P(X) = YE'W

A Input: Alice has a data vector X.
Bob has GaussianQ

A Output: Alice and Bob get additive shargandrg
such thatr, +rg = log P(X)
A How:

I Alice computes>E from X
I Bob computes W frorm Q
I Alice and Bob participate Iin S)E’(N) fo obtainr, andrg



SGAU: A VARIANT

A Bob ha€Encrypted parameter§jm ]

I This can happen under some situations...
i He can comput&)?

I But can only computencryptedmatrix W
homomorphically

SE[- 050" E[Qmg_ 7
§ Eo g f oW == EW]

A He must perform SIP with encrypted W




Modeling Paradigmdviixtures of
Gaussian

P(X) = & ———kexpl- 05(x - ) QH(X - m)

< J(20)° 1Q.
Aw, is the mixture weight of thé&" Gaussian
A m, is the mean of th&t" Gaussian

A Q, is the covariance matrix thidh Gaussian
A D is the dimensionality of the feature vector
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Modeling Paradigmdviixtures of
Gaussian

A Deflne: Note bottom right
~ a 05Qk1 lenZ ? corner includes

Wk—g 0 C, +logw Y 00 %
X=81§  F=lRK) (RX) (KK,)

P~

W [VVkOO k,0,1 klO ]

logP(X) =log § exp()ETWk)

A LOGSUM
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Secure Log Mixture of Gaussian (SMO

logP(X) =log g exp()ETWk)

A Input: Alice has X,
Bob has mixture Gaussian{w, Q,, for all k}

A Output: Alice and Bob obtain additive shargandrg
such that r,+rg = log P(X)

A How

I For each Kk,
A Alice and Bob engage in SGAU to obtain shareandrg

I Alice and Bob engage in the SLOG protocol using,the
andrg  to obtainr, andrg



[ID data

A Computing the log likelihood ofsequencef IID vectors

A Input:
Alice has aequence ofiata vectorsX= X%, X, .. X.1.
Bob has a mixture Gaussian

A Output Alice and Bob get additive sharggindrg such
that r,+rz=1log PX) =S, log P(X

A How:

I Foreacht

A Alice and Bob participate in SMOG to obtain additive shaggandrg,
of log PX)

I Alice computes,=S;r,;,, Bob computeg,=S,rg;,



A More Complex Model: Hiddéviarkov
Models

v

: :
A A
AGt NPOFoOoAfAZGAD TdzyOlrazy 2F

A A dynamical system for tiraearying processes
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HMM Parameters

. - 0.6
A The transition probabilities

I Often represented as a matrix

I a;is the probability that when in state
I, the process will move to |

A The probabilityp. of beginning at
any states
I The complete set is represented s

A Thestate output distributions
I We will assume Gaussian mixtures

I Parameters are the parameters of the
GMM for each state

A



Three Basic HMM Problems

A What is the probability that it will generate a
specific observation sequence

A What is the most probable state sequence, for
a given observation seguence

I The state segmentation problem

A How do weearnthe parameters of the HMM
from observation sequences



Three Basic HMM Problems

A What is the probability that it will generate a
specific observation sequence
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The Forward Algorithm

A Define a(st) =P(X,, X,,...,X,,statdt) = s)
Alnitialize  a(s,0) =p.P(X, |9)
A Recurse a(st)=P(X.|9)a a(s,t- Da,,

A Finally Totalprob=g a(s,T- 1)



The ForwardAlgorithm in Log

A Initialize
loga(s,0) =logp, +logP(X, |s)

A Recurse
loga(s,t) =logP(X, |s)+logq exp(loga(s',t - D +log as.,s)

A Finally
Totallog prob=loggq exp(loga(s,T - 1))



Alice and Bob: Secure Forward
Probability Estimation (SFWD)

A Alice has a vector sequene= X, X, € X

A Bob has an HMM:L = {A, P(X|s),p}
I P(X|s)is a Gaussian mixture for all states

A Output:

I Alice and Bob receive additive shargendrg of
the forward probabilityoX 2y . 2 0 Qa

a



SFWD STEP 1, State density computati

A Input: Alice ha = X, X, € X, Bob has GMMs
P(X]s) for all states s

A Output: For all s, t, Bob obtains encrypted value
Ellog PXs)]
A How:

I Forallt, s

A Alice and Bob engage in the SMOG protocol to obtain additive
sharesg,(s,t) andgg(s,t) of log PX|s)

A Alice sends encrypted valueg&(s,t)] to Bob.
A Bob addsiyg(s,t) to it homorphicallyto obtain Efj.(s,)+0g(s,)] =
E[log PXls)]
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SFWD STEP 2, Forward Prob. Computa

A Input: Bob has transition probabilities lagfor all
s, F YR AYAUAL fpfoaallb.i S LINJ
He also has encrypted value E[log[3(] for allt,s

A Output: Alice and Bob have additive shargandrg of
log P(XL)

A How:
I XD

I Continued on next slide
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SFWD STEP 2, Forward Prob. Computa

A Bob computes E[loga(0,s)] = E[logJ] E[log P(3}s)] for all s
A Forallt>0,s

i C2NJ I ff &@,,hgméniorphicRIREE[Idgetd > 4 Q0 6 (i ?
at-mzaQuea. b 23

I Bob engages with Alice in SLOG.V2 with as input to obtain
EflogS; g(t-m ~ & 20

i Bob computes E[lo§; g(t-m = & LENog PX|s)] to obtain
E[loga(t,s)]

A Bob and Alice engage in SLOG with {E(@gL,s)] for all s} to obtain
additive shares, andrg

ry+rg=1log P(XL.)

119



Three Basic HMM Problems

A Given a observation sequence, determine the
most probable state sequence

I The state segmentation problem

120



Estimating the state sequence

A Find the state sequence for which

P(o,0,,0,...,S5,S,S,:---)

Is largest

A Dynamic programming again: TWéerbialgorithm



TheViterbi Algorithm

A Let ((t,s) = the log probability of the most probable state
sequence ending in state s at time t

A Letd(t,s) = the predecessor to state s at time t in the most
probable state sequence ending in state s at time t
I l.e. the state at time-l in the sequence

A Initialize:
I 0,s) = log, + log P(X| s)
A Fort>0
i d(t,s) =argmax,Gt-mZ a Qa, b, 23
i GtS) =G(t-1, d(t,9)) + l0g gg s+ l0g P | 5)
A Final score:
I P(most.prob.state.sefj=max, G(T-1,s)



TheViterbi Algorithm

A Finding the best state sequence via baekcing

A Initialize: The most probable state sequence at the final instant
I sp;=argmaxT-1,s)

A Fort=TlLdowntol
I s,=d(s.t)



The Secur&/iterbi Algorithm (SVIT)

A Alice has a vector sequen¥e= X, X, & X

A Bob has an HMM:L = {A, P(X|s),p}
I P(X|s)is a Gaussian mixture for all states

A Output:

I Alice and Bob obtain additive shamgsandrg of the probability of the
most likely state sequence

I Alice receives the actual state sequence

ALY FLO0G 'fAOS IyR .20 Oly
sequence as well
I Alice receives permutedIDs for states
I Bob retains permutations



The Secur&/iterbi Algorithm (SVIT)

A STEP 1: Identical to Stepl of the SFWD (secure log
forward probability estimation)

A Outcome: Bob has E[logi®$)] for all s, t



SVIT: Step 2

(e
t=0 E[G0,s)]

SHARE

G (0:5) G5 (0,9)+G(0,5) H(0,5) Ga(0:9)

A Att=0, foreach s
I Bob computes EJ0,s)] = E[logE[log P(¥s)]
I He shares it with Alice using SHARE sotlietobtain
G; (0,s) and ¢{0,s) where ¢(0,s)+G(0,s) €50,S)



SVIT: Step 2

n

t=0 E[30,5)]
SHARE
G (0:5) G, (0,9)+G(0,5) E(0,9) Ga(0:5)
t>0 Hg (t,5,0Q 0
SMV
R (t,9)

F, (0,s)+E(0,s) =ma MZE Qe a (t,s%
-, (0, : X Gt-Mm2ZaQua b T 23
A t>0, for each s
i C2NJ SI OK & Q3 ts,R® 4z IQdE), oA f 12 3
i Alice and Bob engage in SMV usig,slQ 0 6 F 2 NJ,(t- t ¢
M2ZaQu U2 ZtE)ehdEYs),aushtials a C
Fy(t,s) + K(t,S) = max, GA(t-m 2 a 28,00 P
i Note that F{(t,s) + K(t,s) =maxGt-m > a Qb b 2 3
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SVIT: Step 2

n

=0 E,S)]
SHARE
6 (0 G, (0.5)+G (0.5) (0.5) G, (0,5)
t>0 Hg (,5,9 0
SMV
Fs (t.9) 06, 00
Fa(0,5)+E(0,5) MmaxGtm 2 a Q@ o gs,t% -

At>0, foreachs

i Alice and Bob engage in SMI witg(ti$,Q 0 L(¥MRZ a0 0
Alice obtaingi(s,t)
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SVIT: Step 2

n

t=0 E[G0,s)]
SHARE
G5(0.9) G, (0,5)+G(0,5) €(0,) Ga(0:9)
>0 Hg (t,5,92 0
SMV
R (t,9)

Fa(0,9)+E(0,5) mmaxG(t-m 2 a Q @, Q%Fg (gt;} -
E[R (t.5) + log Pg|s)] SHARE

Gs (L,s) J (t8)

A t>0, foreach s

I Bob computes E[R,s)] E[log P{|s)] = E[E(t,s) + log P{|s)]
I He uses SHARE to share it with Alice, so that he géts)@nd Alice
obtains Jt,s), suchthat ,{&,s) + G(t,s) = K(t,s) + log PX|s)



SVIT: Step 2

n

N *“.

t=0 E,s)]
SHARE
G5(0.9) G, (0,5)+G(0,5) €(0,) Ga(0:9)
>0 Hs (t,5,9 0
R (t,9) SMV F (t ‘\

Fa(0,9)+E(0,5) mmaxG(t-m 2 a Q @, Q%S(g} -
E[R (t.5) + log Pg|s)] SHARE

Gs (L,S) J (t5) J

Gs (L,s) Gy (L.5)

A t>0, for each s
I Alice compute$s,(t,s) = J(t,s) + K(t,9)
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SVIT: Step 2

n

t=0 E,s)]
SHARE
G5(0.9) G, (0,5)+G(0,5) €(0,) Ga(0:9)
>0 Hs (t,5,9 0
R (t,9) SMV F (t ‘W

Fa(0,9)+E(0,5) mmaxG(t-m 2 a Q @, Q%S(g} -
E[R (t.5) + log Pg|s)] SHARE

Gs (L,S) J (t5) J

G; (L,5) Gp (694G (L,S) =((t,9) G (19)
SMV
Mg [, +Hg= max, T-1,s) M

A Alice and Bolperform SMV on G(T-1,s) (for all s) and gT-1,s) to get additive shares
I, andrg of max, G(T-1,s)




SVIT: Step 3

n

G, (T-1,8)+G (T-1,s) £X(T-1,S) G, (T-1,9)

SMI

A T-1: Alice and Bob perform SMAlice obtains s,
A She perform$acktracingusing thed(t,s) she possesses



Learning model parameters

AGMM parameters:
il RFLIWIAY3 . 206Qa Daa (2
AOnly adapt means

I Outcome: Bob get&ncryptedneans/m for
each Gaussian

I (Pathakand RajJnterspeech2011)

A HMM parameters
I Similarly complicated
I (Smaragdisnd ShashankaEEE TASLP, May 07)



Applying it to speech..



A Brief Primer on Speech Processing

Tasks
.................................. o
. Areyou really
*| Speaker Verification ~ Bob? Yes/No
: (binary)

Which one of

Speaker Identification| ~ Alice, Bob, Carol,
51 ¢ &R yo?
(multi-class)

A\ 4

o You said
Speech Recognition cKSff2y

A 4

@

AAll are pattern classification tasks
ANot addressing secure communication of speech (much literature on this topic
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Common Aspect: Pattern Recognition

A All cases are treated as statistical pattern classification

A Usually performed through Bayesclassifier

I Let P(X|C) be the probability distribution of class C

A P(X | C) usually a parametric model: P(X | C) = LRYX;
i Lcare the parameters of the class C

e

= argmax; - log P(X;L ) +log P(C)

A P(C) represents tha prioribias for class C.

A The difference between the applications is in the
candidate classes @ and the model P(L ).



Feature Computation

|y ———
DOOO0000uoananoanaaaoooooooaoaony

A Do not work on speech signal

I Work on sequence deature vectorsomputed from speech
A E.g. MFCC vector sequence

AdaLlSSOK Nbsegdnde bfffedturdvectors derived
from it
I X is actually a sequence of feature vectors
AX=DE %X 1]
A For the privacypreserving frameworks we will assume that
0KS dzaSNQa Of ASyd RS@OAOS O
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Biometric Applications

A Biometric applications deal with determining the
identity of the speaker.

o

E=argmax; . & 10gP(X,;L ) +4c
t

A Here, the seC is the set of candidate speakers
for a recording
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Biometric Applications

A Typically, the individual vectors in a recording
Xare assumed to be IID

A The distribution of vectors is assumed to be a
Gaussian mixture

A Thus, for any speaker S P¥; L J) is
assumed to have the form

log P(X;L ) = a loga \/(Zp\)NS TQ | Xp(- O'S(Xt - ”%,k)T Q-S?k(xt - ”%k))




Biometric ApplicationsSpeaker |D

P

ACA&a | asSi 2F aOl yRARI
recording

I Parameters of their models are learned from data
for the speaker

ATheseCYl & Ay Of dzZRS | a!
NBE LINS &Sy 0 Agfdhel o KBS &1 v 2
I The parameters  for the universal speaker are

learned using data from many speakers

I L Is often called &Jniversal Background Model



Biometric ApplicationsSpeaker
Verification

A A user claims an identity S

A System must confirm if the user is who they
claim they claim to be
A C consists of S and universal speaker U

I The parameters cfor speaker S are obtained by
adaptingL to data from the speaker S



Recognition Applications

e

E= argmax; - log P(X;L ) +log P(C)

A C represents the collection of all possible
word sequences to be considered

AP(XL ) is represented by an HMM



|solated Word recognition
s

A HMMs for every word to be Y mji
recognized &8-8.88-0 Word 3

A The probability of the recording
IS obtained with each HMM

A The most likely HMM represents the word
that was spoken

I A priori probabilities to words may be applied



Phrase Spotting

»%@ Phrase 1

% Phrase 2
3330 None of the above

A HMMs for every phrase to be spotted
itfdza 2yS T2NJ UKS ayz2yS 2
A At each shift, all HMMs are evaluated

A The most likely HMM represents a phrase that
may have occurred



Continuous Speech Recognition

A The set of all sentences is represented as a graph
I Loopy graph for unrestricted speech

A The HMMs for the words are embedded in the graph

A The most likely state sequence is obtained using\therbi
algorithm

I The word sequence can be derived from the state sequence




