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Motivation 

ÅLarge volume, high dimensional data 

ÅDimension reduction for: 

ïVisualization: insight into the dataset 

ïCompression: storage 

ïDenoising: remove redundant dimensions, 

reduce classifier complexity = improve 

generalization 



Motivation 

ÁFace image dataset: 

ÁRepresentation: a high dimensional vector where 

each dimension represents the brightness of one 

pixel. 

 

 

 

 

ÁUnderlying structure parameters: different camera 

angles, pose and lighting condition, face expression, 

etc.  
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Motivation 

ÁCharacter recognition: 

ÁRepresentation: a high dimensional vector where 

each dimension represents the brightness of one 

pixel. 

 

 

 

 

ÁUnderlying structure parameters: orientation, 

curvature, style (e.g., 2 with/without loops ) 
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Motivation 

ÅText document:  
ïRepresentation: vector of term frequency over the 

dictionary of the word. 

 

 

 

 

 

 

ïUnderlying structure parameter: topic proportions 

 

Term D1 D2 

game 1 0 

decision 0 0 

theory 2 0 

probability 0 3 

analysis 0 2 

é 



Motivation 

ÅMotion capture:  
ïRepresentation: pose is determined, for example, by 

the 3D coordinates of multiple points on the body. 

 

 

 

 

 

 

ïUnderlying structure parameter: pose type 

ïMotion can be viewed as a trajectory on the manifold 

 



Motivation 

ÅMicroarray gene expression:  
ïRepresentation: vector of gene expression values or 

sequences of such vectors. 

 

 

 

 

 

 

ïUnderlying structure parameter: correlated (or 

dependent) gene groups 

 



Motivation 

ÁOur main goal is to discover the underlying 

structure of the data given the high 

dimensional observations. 

ÁReal world datasets are highly nonlinear.  

ÁIt is assumed that data lie on or close to a 

very thin layer of a manifold embedded 

into the high dimensional space.  



Linear Dimension Reduction 

ÅCommon assumption: 

data points lie on a low-

dimensional plane 

ÅProperties: 

 

Å  

 

Å  

 

 

  

 



Principle Component Analysis (PCA) 

ÅProblem:  

ï  

ïFind the affine transformation 

 

that maximizes the low-dimensional 

transformed data variation: 

 

 

ïor equivalently 

 

 

 



Principle Component Analysis (PCA) 

ÅEquivalent formulation:  

ï  

where 

 

ÅSolution: EigenValue Decomposition (EVD) 

ï 

 

 

 



Principle Component Analysis (PCA) 

ÅPCA produces an affine transformation mapping the high 

dimensional space into a low dimensional space. 

 

 

 

 

 

 

ÅDistance: 

ÅSpectral method 

ÅParametric: easily extends to new point 



Multidimensional Scaling (MDS) 

ÅConstruct a map of 10 US cities from their 
relative distances*: 

cities =  

{' Atl ','Chi','Den',' Hou',' LA','Mia','NYC','SF','Sea','WDC '};  

D = [    0  587 1212  701 1936  604  748 2139 2182   543;  

       587    0  920  940 1745 1188  713 1858 1737   597;  

      1212  920    0  879  831 1726 1631  949 1021  1494;  

       701  940  879    0 1374  968 1420 1645 1891  1220;  

      1936 1745  831 1374    0 2339 2451  347  959  2300;  

       604 1188 1726  968 2339    0 1092 2594 2734   923;  

       748  713 1631 1420 2451 1092    0 2571 2408   205;  

      2139 1858  949 1645  347 2594 2571    0  678  2442;  

      2182 1737 1021 1891  959 2734 2408  678    0  2329;  

       543  597 1494 1220 2300  923  205 2442 2329     0];  

 

 

ÅMDS finds the original coordinates up to rotation, 
translation, and axis reversal. 

OSU 

* numbers taken from Matlabôs website 



Multi-Dimensional Scaling (MDS) 

ÅIn MDS, the goal is to obtain a set of coordinates 

 

 

Ågiven only the square Euclidean distances 

matrix 

 

ÅNote that: 

ï the classical MDS does not account for noise 

ïMDS outputs coordinates (and not a 

mapping). 



Multi-Dimensional Scaling (MDS) 

Solution (assume                ): 

ÅExpress     in a matrix form:  

 

 

ÅMultiplying both sides by  

 

ÅGiven the EVD of the ñcenteredò distance matrix, 

 

ÅThe resulting coordinate are 

 



Multi-Dimensional Scaling (MDS) 

ÅGiven a set of all distances finds coordinates: 

 

 

 

 

ÅNon-parametric 

ÅRequires all distances  

ÅGeneralizations:  

ïstress minimization (stress majorization) 

ïEuclidean distance matrix completion 

 

 



Linear Dimension Reduction 

ÅAdvantages:  

ïClosed-form solutions 

ïDenoising 

ïOut-of-sample extension (for some methods) 

ÅAccuracy limitation: 

 

 

 

The EVD in PCA will not recognize the 1D 

structure of the curve 

 

 

 

 



Manifold Learning 

ÅNomenclature: 

ïManifold 

ïLocal Coordinates 

ïGlobal Coordinates 

ïTangent Plane 

ïGeodesics 

 



Åd-dimensional differentiable 

manifold: 

ïCan be covered with open sets 

which map (homomorphism) to 

subsets of d-dimensional 

Euclidean space 

ïGlobal mapping may not exist 

ÅTangent space: 

 

 

Informal Introduction to 

Manifolds 



Åd-dimensional Riemannian 

manifold: 

ïRiemannian metric (ólocal 

inner productô) is defined 

for  any  

 

ïEuclidean: if  

and  

Informal Introduction to 

Manifolds 



ÅConsider a continuous path on a 

manifold 

ÅPath length: 

 

ïUsing Euclidean metric 

 

ïGeodesic distance:  

 

ïGeodesic: the shortest path (assuming 

the manifold is geodesically-convex) 

 

Informal Introduction to 

Manifolds 

*From Mark Ironôs website 



What is manifold learning? 
Å A       dimensional manifold        is embedded in an       dimensional space, 

and there is an explicit mapping                           where            . We are 

given samples                  with noise .  

 

 

 

 

 

 

Å     is called embedding function,     is the extrinsic dimension,    is the 

intrinsic dimension or dimension of the latent space.  

Å Finding either       or    from given     is called manifold learning. 

Å We donôt have any information about the function       , distribution of the 

data in low dimension         , and the distribution of the noise. 

Å We assume        is smooth,    is distributed uniformly, and noise is small. 

 

 

 



Approaches in manifold learning 

Parametric vs. non-parametric 
Å In the non-parametric approach we recover     directly from    . 

Å We construct a neighborhood graph of the data, where each vertices of 

the graph is the data point in the high dimension and each edge indicates 

the neighborhood relation.  

ïk-nearest neighbors (kNN) 

ï  - ball 

Å A neighborhood graph can be seen as a discrete approximation to a 

smooth manifold.  

 

Å Cannot be trivially generalized to the space of the data. 

 



Approaches in manifold learning 

Parametric vs. non-parametric 

Å In the parametric approach, we find the explicit mapping         from the 

given sample      .  

Å Most of the approaches are probabilistic (latent factor modeling). 

 

Å We can generalize to the space of the data where there is no samples. 

 

Å There is no closed form solution for these algorithms and they prone to local 

optimum. 

Å To have a coherent, single global low dimensional coordinate, we need to 

take a further step and implement the process of coordinate alignment. 

 

ï Mixture of factor analyzers [Ghahramani et alô97]. 

 



Approaches in manifold learning 

Isometric vs. non-isometric 

Å Isometric embedding is a mapping which preserves the metric. 

 

 

 

 
 

Å Intuitively, an isometry is a mapping that locally looks like a rotation plus translation, 

thus preserving distances and angles among the vectors. 

Å ISOMAP [Tenenbaum et alô00], Maximum variance unfolding [Weinberger et alô04]. 

Å Non-isometric embedding generally divides into two categories: 

ï Neighborhood preserving mapping which preserve the neighborhood relations among the 

data points such as locally linear embedding (LLE), Laplacian eigenmap (LE) [Belkin et 

alô03]. 

ï Conformal mapping which is a mapping up to rotation, translation, and rescaling. It preserves 

the angles among the data points as well as neighborhood relations such as conformal 

ISOMAP [Sha et alô05]. 



Approaches in manifold learning 
Å Global vs. local 

ï In the global preserving approaches, we preserve the global geometry 

properties of the manifold such as geodesic distance (ISOMAP) [Tenenbaum 

et alô00]. 

 

 
 

ï Local preserving approaches rely on the fact that the surface of any manifold 

can be locally approximated by its tangent space.  

 

 

 

 

 

Å Overlapping consensus of local geometry information can be used to find a single 

global low dimensional embedding. 

 

A B 



From a Manifold to a Graph 



OSU EECS  Colloquium (Fall'07) 

ÅGraphs (proximity graphs) 

ïComplete graph 

ïMinimum spanning tree (MST) 

ï      ball graph 

ïK-nearest neighbors graph 

ÅWhy?  Proximity graphs offer description 

of local geometry. 

ÅGlobal similarity via local similarities. 

Graphs on a Manifold 

1 2 

3 

http://upload.wikimedia.org/wikipedia/commons/7/75/Complete_graph_K6.svg


Unweighted Graphs Representation 

ÅRepresentation:  

ïVertices: WLOG  

ïThe edge information (connectivity) is 

recorded by the adjacency matrix  

 

 

ïThe degree of a vertex is the number of 

vertices connected to it:  

ïGraph Laplacian:                      where   

 

ïNormalized graph Laplacian:  

1 2 3 



Weighted Graphs 

ÅWeighted graphs: the adjacency matrix is given by  
 
 

ÅThe weights       define the graph. 

ÅFor example: Consider the distance matrix whose ij-th 
element is given by                        e.g., if  

 

ÅThe corresponding, weight matrix could be constructed 
using a kernel, e.g., 

 

ÅThe weights here satisfy            (special case                  
     - unweighted graph). 



ISOMAP 
Å [Tenenbaum et al., 2000] 

ïGeneral idea:  

ÅApproximate the geodesic distances by shortest graph distance. 

ÅMDS using geodic distances 

 

 

 

 

 

 

ïISOMAP provides an isometric embedding. Computational complexity 

is high (O(N3)). It fails for a non-convex region dataset because of the 

convexity properties of the geodesic distance.  

ïVariations:  Landmark ISOMAP, Conformal ISOMAP [Silva et alô03]. 

 

 

A B 

Geodesic distance: shortest path along the manifold 

A B 

Graph approximation for geodesic distance. 

Shortest path on the graph. 

The weights on the edges are 

Euclidean distance.  



ISOMAP 
Å [Tenenbaum et al., 2000] 

ÅAlgorithm: 

ïConstruct a neighborhood graph  

ïConstruct a distance matrix  

 

 

ïFind the shortest path between every i and j (e.g. using Floyd-

Marshall) and construct a new distance matrix such that          is the 

length of the shortest path between i and j. 

ïApply MDS to matrix to find coordinates 

 

 

 


