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Motivation

A Large volume, high dimensional data
A Dimension reduction for:

I Visualization: insight into the dataset
I Compression: storage

I Denoising: remove redundant dimensions,
reduce classifier complexity = improve
generalization




Motivation

A Face image dataset:
A Representation: a high dimensional vector where
each dimension represents the brightness of one
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A Underlying structure parameters: different camera
angles, pose and lighting condition, face expression,
etc.
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Motivation

A Character recognition:
A Representation: a high dimensional vector where
each dimension represents the brightness of one
pixel. SSCCoad

281 28

A Underlying structure parameters: orientation,
curvature, style (e.g., 2 with/without loops )




Motivation

A Text document:
I Representation: vector of term frequency over the
dictionary of the word.
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I Underlying structure parameter: topic proportions
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Motivation

A Motion capture:
I Representation: pose is determined, for example, by
the 3D coordinates of multiple points on the body.

“OREE =R WES

I Underlying structure parameter: pose type
I Motion can be viewed as a trajectory on the manifold
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Motivation

A Microarray gene expression:
I Representation: vector of gene expression values or
sequences of such vectors.
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I Underlying structure parameter: correlated (or
dependent) gene groups




Motivation

A Our main goal is to discover the underlying
structure of the data given the high
dimensional observations.

A Real world datasets are highly nonlinear.

A It is assumed that data lie on or close to a
very thin layer of a manifold embedded
into the high dimensional space.




Linear Dimension Reduction

A Common assumption: +3
data points lie onalow-  up

: : Uuq
dimensional plane
A Properties:
A A point z in the low-dimension plane satisfies:
xr—b= Zgl:l a;u; € span{uq,up, ..., u }t.

Any two point on the plane x1, x> satisfy: x1 —
xo € span{ui,un,...,uq}t.

A




Principle Component Analysis (PCA)

LD
A Problem: “ e
.. ] _ o @
I Given {z1,z5,...,zn} in RP, %%
I Find the affine transformation ®
T:RP - R4 T(x) = Az + b Z

that maximizes the low-dimensional
transformed data variation:
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I or equivalently
Max 4 47— 55 Sy Sy | T (@) — T()])2




Principle Component Analysis (PCA)

. . L2 U1
A Equivalent formulation: “
where
Co =250 (2 — %) (z; — ;)T xq
A Solution: EigenValue Decomposition (EVD)
I Cp=[uy...upldiag(A1,....2Ap)[uy...up]t

AMZ>X>...2Ap

A= :ul ...ud]T
T(z) = [ug...ug]! (z — T)




Principle Component Analysis (PCA)

A PCA produces an affine transformation mapping the high
dimensional space into a low dimensional space.

T3 T : RD — Rd
T(z) = [u1...ug]! (z — T)
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A Distance: || T'(x1) — T(z2)|| < ||y — 22|
A Spectral method
A Parametric: easily extends to new point
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Multidimensional Scaling (MDS)

A Construct a map of 10 US cities from their
relative distances*:

NYC

cities =
{ Atl '/Chi' 'Den, Hou', LA''Mia'/NYC' 'SF' 'Sea’,WDC g 400 ¢ . 1
D=[ 0 5871212 7011936 604 748 2139 2182 543; o~ OSuU ‘WDC

587 0 920 940 1745 1188 713 1858 1737 597; 200 |

1212 920 0 879 831 1726 1631 949 1021 1494;

701 940 879 01374 968 1420 1645 1891 1220; ® .Den

1936 1745 8311374 02339 2451 347 959 2300; = Or

604 1188 1726 968 2339 0 1092 2594 2734 923; Sk JAfl

748 713 1631 1420 2451 1092 0 2571 2408 205; -200 ;

2139 1858 949 1645 347 2594 2571 0 678 2442;

2182 1737 1021 1891 959 2734 2408 678 0 2329; 400 LA

543 597 1494 1220 2300 923 205 2442 2329  0];

600 | | . +Hou | . +Mia
-1500 -1000 -500 0 500 1000 1500
Miles

A MDS finds the original coordinates up to rotation,
translation, and axis reversal.

* numbers taken fromMa t | wdb<tes
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Multi-Dimensional Scaling (MDS)

A In MDS, the goal is to obtain a set of coordinates

Xn = [x1,29,...,20]
A given only the square Euclidean distances
matrix D , ,
Dy = i — ;<.
A Note that:

I the classical MDS does not account for noise

I MDS outputs coordinates (and not a
mapping).
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Multi-Dimensional Scaling (MDS)

(assume X, 1 = 0):
A ExpressD in a matrix form:
Dy = |lzg — x5]1* = ||zl + [|l5]|1* — 22 =5
D? = ¢1' +1¢" —2X Xn, ¢ = [z1]? ..., [lznll?]*
A Multiplying both sides by P =1 — 117"
—> xlx,=-iPD%P
AGi ven the EVD of the fice




Multi-Dimensional Scaling (MDS)

A Given a set of all distances finds coordinates:
T _ 1 2
UANU+' = —§PD P ® O
1
| > ‘ ‘

A Non-parametric
A Requires all distances

A Generalizations:
I stress minimization (stress majorization)
I Euclidean distance matrix completion




Linear Dimension Reduction

A Advantages:
I Closed-form solutions
I Denoising
I Out-of-sample extension (for some methods)

A Accuracy limitation:
| Linear projection to R

> 7

The EVD in PCA will not recognize the 1D
structure of the curve




Manifold Learning

A Nomenclature: x(t)
I Manifold
I Local Coordinates
I Global Coordinates
I Tangent Plane
I Geodesics 0




Informal Introduction to
Manifolds

A d-dimensional differentiable
manifold:

I Can be covered with open sets
which map (homomorphism) to
subsets of d-dimensional
Euclidean space

I Global mapping may not exist
A Tangent space:

— {Zz_l 8§(7)az|a = ]Rd}




Informal Introduction to
Manifolds

A d-dimensional Riemannian
manifold:

ITRIi emanni an metr

l nner product 0)
for any z € M and u,v € Tx M

ga(u,v) = (u, v)g
i Euclidean: if v =Y a;z2-
and v = sz’(%i

gCU(ua U) — Z a’ib’i




Informal Introduction to
Manifolds

A Consider a continuous path on a
manifold =(?),t € [0,1],z(0) = z,z(1) =y
A Path length:

1(z) = [ \/92(@(t),2(t))dt

I Using Euclidean metric (( X
I(z) = Jg l2(8)|dt P
I Geodesic distance: /

I Geodesic: the shortest path (assuming
the manifold is geodesically-convex) ViZ = 0

*FromMarklr on6s we




What is manifold learning?

A A d dimensional manifold A is embedded in an 772 dimensional space,
and there is an explicit mapping f : R% 5 R™ where d < m. We are
given samples x; € R"" with noise .

1

r; = f(7i) + € g

> 72

Af(-) is called embedding function, mis the extrinsic dimension, dis the
intrinsic dimension or dimension of the latent space.

A Finding either f(-)or from given z;is called manifold learning.

A wWe don6t have any infor(ation about t
data in low dimension 7: , and the distribution of the noise.

A We assume p(7)is smooth, is distributed uniformly, and noise is small.
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Approaches in manifold learning

Parametric vs. non-parametric

A In the non-parametric approach we recover 7; directly from z;

A We construct a neighborhood graph of the data, where each vertices of
the graph is the data point in the high dimension and each edge indicates
the neighborhood relation. /

. . “\/
I k-nearest neighbors (kNN)

(T
i - ball N/

A A neighborhood graph can be seen as a discrete approximation to a
smooth manifold.

—~a— |

A Cannot be trivially generalized to the space of the data.




Approaches in manifold learning

Parametric vs. non-parametric

A In the parametric approach, we find the explicit mapping f(-) fromthe
given sample ;.
A Most of the approaches are probabilistic (latent factor modeling).

A We can generalize to the space of the data where there is no samples.

A There is no closed form solution for these algorithms and they prone to local
optimum.

A To have a coherent, single global low dimensional coordinate, we need to
take a further step and implement the process of coordinate alignment.

I Mixture of factor analyzers [Ghahramaniet al 69 7] .
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Approaches in manifold learning

Isometric vs. non-isometric
A Isometric embedding is a mapping which preserves the met%\

(a1,az) = (b1, b2) b, € a2

A Intuitively, an isometry is a mapping that locally looks like a rotafion piﬁs translation,
thus preserving distances and angles among the vectors.

A ISOMAP [Tenenbaumet al 600] , Maxi mum variance unf

A Non-isometric embedding generally divides into two categories:
I Neighborhood preserving mapping which preserve the neighborhood relations among the
data points such as locally linear embedding (LLE), Laplacian eigenmap (LE) [Belkin et
al 603] .
I Conformal mapping which is a mapping up to rotation, translation, and rescaling. It preserves
the angles among the data points as well as neighborhood relations such as conformal
ISOMAP [Shaet al 605] .
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Approaches in manifold learning

A Global vs. local

I In the global preserving approaches, we preserve the global geometry
properties of the manifold such as geodesic distance (ISOMAP) [Tenenbaum
et al 6o00] .

A./\/%

I Local preserving approaches rely on the fact that the surface of any manifold
can be locally approximated by its tangent space.

A Overlapping consensus of local geometry information can be used to find a single
global low dimensional embedding.

oregonstate (| S|



From a Manifold to a Graph

1. Consider Manifold M.

a A

2. Data points {x1,z>,...,zy} (x; € M) are
obtained from M.

3. Given only the data,

4. Construct a graph G = (V, E) with a vertex
set V. = {x1,x>,...,xn} and an edge set -
E = {e1,e2,...,en}, Where e, = (x;,2;) € E
if x; and x; are connected.
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Graphs on a Manifold
A Graphs (proximity graphs)
I Complete graph
I Minimum spanning tree (MST)
I e—ball graph
I K-nearest neighbors graph

AWhy? Proximity graphs offer descrlptlon
of local geometry.

A Global similarity via local similarities.

OSU EECS Colloguium (Fall'07)


http://upload.wikimedia.org/wikipedia/commons/7/75/Complete_graph_K6.svg

Unweighted Graphs Representation

A Representation: D26
i Vertices: WLOG {1,2,...,n}.

I The edge information (connectivity) is
recorded by the adjacency matrix
_J1 Gia)eE 92{328]
[A]z,]—{o (’L,j)gE 001

I The degree of a vertex is the numberof ,_| 1 > 1]

vertices connected to it: d; = >4 A;j.

i Graph Laplacian: L = D — A, where ~ __ s _\/Lf )
D = diag{[dy,d>, ... ,dn]}. I

. . 11
I Normalized graph Laplacian: £ =D 2LD™2.




Weighted Graphs

A Weighted graphs: the adjacency matrix is given by
Wy 4 ’i, ' E
Al = { 0" Ez?% é E.

A The weights w;; define the graph.

A For example: Consider the distance matrix whose ij-th
element is given by [D];; = d(=;, 2;), e.Q., if i, x; € R™
d(z;, ) = |lzi—mjllo = /SPq (i(k) — (k)2

A The corresponding, weight matrix could be constructed

using a kernel, e.g., w;; = exp(—D2/(2¢)).

A The weights here satisfy 0 <w;; <1 (special case
Djj € {0,0¢} - unweighted graph).




ISOMAP

A [Tenenbaum et al., 2000]

I General idea:
A Approximate the geodesic distances by shortest graph distance.

A MDS using geodic distances

Graph approximation for geodesic distance.
Shortest path on the graph.

Geodesic distance: shortest path along the manifold J
s AT;\—X/ :

\_——-\/

\/ The weights on the edges are
Euclidean distance.

I ISOMAP provides an isometric embedding. Computational complexity
Is high (O(N?)). It fails for a non-convex region dataset because of the

convexity properties of the geodesic distance.
I Variations: Landmarkl S OMA P, Conf or mal | SOI
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ISOMAP

A [Tenenbaum et al., 2000]

A Algorithm:
I Construct a neighborhood graph w;; € {O, 1}
I Construct a distance matrix

g — ) llwi—zgll wi =1
v O w,,;j =0

I Find the shortest path between every | and j (e.g. using Floyd-
Marshall) and construct a new distance matrix such that Dij IS the
length of the shortest path between i and j.

I Apply MDS to matrix to find coordinates




